Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-25T22:12:20.729Z Has data issue: false hasContentIssue false

THE DENSITY OF NUMBERS REPRESENTED BY DIAGONAL FORMS OF LARGE DEGREE

Published online by Cambridge University Press:  23 April 2018

Brandon Hanson
Affiliation:
Pennsylvania State University, University Park, PA, U.S.A. email bwh5339@psu.edu
Asif Zaman
Affiliation:
Stanford University, Stanford, CA, U.S.A. email aazaman@stanford.edu
Get access

Abstract

Let $s\geqslant 3$ be a fixed positive integer and let $a_{1},\ldots ,a_{s}\in \mathbb{Z}$ be arbitrary. We show that, on average over $k$, the density of numbers represented by the degree $k$ diagonal form

$$\begin{eqnarray}a_{1}x_{1}^{k}+\cdots +a_{s}x_{s}^{k}\end{eqnarray}$$
decays rapidly with respect to $k$.

Type
Research Article
Copyright
Copyright © University College London 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bennett, M. A., Dummigan, N. P. and Wooley, T. D., The representation of integers by binary additive forms. Compos. Math. 111(1) 1998, 1533.Google Scholar
Bukh, B., Lower bounds on the easier Waring problem. MathOverflow. URL:https://mathoverflow.net/questions/64649/lower-bounds-on-the-easier-waring-problem.Google Scholar
Iwaniec, H. and Kowalski, E., Analytic Number Theory (Colloquium Publications 53 ), American Mathematical Society (Providence, RI, 2004).Google Scholar
Landau, E., Ueber die zahlentheoretische Funktion 𝜑(x) und ihre Beziehung zum Goldbachschen satz. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen 1900 1900, 177186.Google Scholar
Mahler, K., Zur Approximation algebraischer Zahlen III. Acta Math. 62(1) 1933, 91166. Über die mittlere Anzahl der Darstellungen grosser Zahlen durch binäre Formen.Google Scholar
Nathanson, M., Additive number theory. In The Classical Bases (Graduate Texts in Mathematics 164 ), Springer (1996).Google Scholar
Soundararajan, K., Small gaps between prime numbers: the work of Goldston-Pintz-Yıldırım. Bull. Amer. Math. Soc. 44 2007, 118.CrossRefGoogle Scholar
Stewart, C. L. and Xiao, S. Y., On the representation of integers by binary forms. Preprint, 2016,arXiv:1605.03427.Google Scholar
Vaughan, R. and Wooley, T., Waring’s problem: a survey. In Number Theory for the Millennium, III (Urbana, IL, 2000) (2002), 301340.Google Scholar
Wooley, T., Quasi-diagonal behaviour in certain mean value theorems of additive number theory. J. Amer. Math. Soc. 7 1994, 221245.Google Scholar
Wright, E. M., An easier Waring’s problem. J. Lond. Math. Soc. S1‐9(4) 1934, 267.Google Scholar