Crossref Citations
This article has been cited by the following publications. This list is generated based on data provided by
Crossref.
Falconer, K. J.
1985.
On the Hausdorff dimensions of distance sets.
Mathematika,
Vol. 32,
Issue. 2,
p.
206.
Mattila, Pertti
1985.
On the Hausdorff dimension and capacities of intersections.
Mathematika,
Vol. 32,
Issue. 2,
p.
213.
Dodson, M. M.
Rynne, B. P.
and
Vickers, J. A. G.
1990.
Diophantine approximation and a lower bound for Hausdorff dimension.
Mathematika,
Vol. 37,
Issue. 1,
p.
59.
Rynne, Bryan P.
1992.
Regular and ubiquitous systems, and ‐dense sequences.
Mathematika,
Vol. 39,
Issue. 2,
p.
234.
Dickinson, H.
1993.
The Hausdorff dimension of systems of simultaneously small linear forms.
Mathematika,
Vol. 40,
Issue. 2,
p.
367.
Bugeaud, Yann
2002.
Approximation par des Nombres Algébriques de Degré Borné et Dimension de Hausdorff.
Journal of Number Theory,
Vol. 96,
Issue. 1,
p.
174.
Bugeaud, Yann
2004.
Intersective sets and Diophantine approximation.
Michigan Mathematical Journal,
Vol. 52,
Issue. 3,
Bugeaud, Yann
2004.
An inhomogeneous Jarník theorem.
Journal d'Analyse Mathématique,
Vol. 92,
Issue. 1,
p.
327.
DURAND, ARNAUD
2008.
Sets with large intersection and ubiquity.
Mathematical Proceedings of the Cambridge Philosophical Society,
Vol. 144,
Issue. 1,
p.
119.
BARRAL, JULIEN
and
SEURET, STÉPHANE
2008.
Ubiquity and large intersections properties under digit frequencies constraints.
Mathematical Proceedings of the Cambridge Philosophical Society,
Vol. 145,
Issue. 3,
p.
527.
ELEKES, MÁRTON
KELETI, TAMÁS
and
MÁTHÉ, ANDRÁS
2010.
Self-similar and self-affine sets: measure of the intersection of two copies.
Ergodic Theory and Dynamical Systems,
Vol. 30,
Issue. 2,
p.
399.
Färm, David
and
Persson, Tomas
2011.
Large intersection classes on fractals.
Nonlinearity,
Vol. 24,
Issue. 4,
p.
1291.
Persson, Tomas
and
Reeve, Henry W. J.
2013.
ON THE DIOPHANTINE PROPERTIES OF
λ
‐EXPANSIONS
.
Mathematika,
Vol. 59,
Issue. 1,
p.
65.
Persson, Tomas
and
Reeve, Henry W. J.
2015.
A Frostman-Type Lemma for Sets with Large Intersections, and an Application to Diophantine Approximation.
Proceedings of the Edinburgh Mathematical Society,
Vol. 58,
Issue. 2,
p.
521.
Lindenstrauss, Elon
and
Saxcé, Nicolas de
2015.
Hausdorff dimension and subgroups of SU(2).
Israel Journal of Mathematics,
Vol. 209,
Issue. 1,
p.
335.
Lucà, Renato
and
Rogers, Keith M.
2017.
Coherence on Fractals Versus Pointwise Convergence for the Schrödinger Equation.
Communications in Mathematical Physics,
Vol. 351,
Issue. 1,
p.
341.
de Saxcé, Nicolas
2017.
Borelian subgroups of simple Lie groups.
Duke Mathematical Journal,
Vol. 166,
Issue. 3,
Mattila, Pertti
2019.
New Trends in Applied Harmonic Analysis, Volume 2.
p.
129.
LUCÀ, RENATO
and
ROGERS, KEITH M.
2019.
A note on pointwise convergence for the Schrödinger equation.
Mathematical Proceedings of the Cambridge Philosophical Society,
Vol. 166,
Issue. 2,
p.
209.
DING, NAN
2021.
LARGE INTERSECTION PROPERTIES FOR LIMSUP SETS GENERATED BY RECTANGLES IN COMPACT METRIC SPACES.
Fractals,
Vol. 29,
Issue. 06,
p.
2150137.