Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-12T00:52:12.647Z Has data issue: false hasContentIssue false

APPROXIMATING THE MAIN CONJECTURE IN VINOGRADOV’S MEAN VALUE THEOREM

Published online by Cambridge University Press:  21 December 2016

Trevor D. Wooley*
Affiliation:
School of Mathematics, University of Bristol, University Walk, Clifton, Bristol BS8 1TW, U.K. email matdw@bristol.ac.uk
Get access

Abstract

We apply multigrade efficient congruencing to estimate Vinogradov’s integral of degree $k$ for moments of order $2s$, establishing strongly diagonal behaviour for $1\leqslant s\leqslant \frac{1}{2}k(k+1)-\frac{1}{3}k+o(k)$. In particular, as $k\rightarrow \infty$, we confirm the main conjecture in Vinogradov’s mean value theorem for a proportion asymptotically approaching $100\%$ of the critical interval $1\leqslant s\leqslant \frac{1}{2}k(k+1)$.

Type
Research Article
Copyright
Copyright © University College London 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arkhipov, G. I., Chubarikov, V. N. and Karatsuba, A. A., Trigonometric Sums in Number Theory and Analysis (de Gruyter Expositions in Mathematics 39 ), Walter de Gruyter (Berlin, 2004).Google Scholar
Bourgain, J., Demeter, C. and Guth, L., Proof of the main conjecture in Vinogradov’s mean value theorem for degrees higher than three. Ann. of Math. (2) 184 2016, 633682.Google Scholar
Ford, K. B., New estimates for mean values of Weyl sums. Int. Math. Res. Not. IMRN 1995(3) 1995, 155171.CrossRefGoogle Scholar
Ford, K. B. and Wooley, T. D., On Vinogradov’s mean value theorem: strongly diagonal behaviour via efficient congruencing. Acta Math. 213(2) 2014, 199236.Google Scholar
Hardy, G. H. and Wright, E. M., An Introduction to the Theory of Numbers, 4th edn., The Clarendon Press, Oxford University Press (Oxford, 1960).Google Scholar
Hua, L.-K., On Tarry’s problem. Q. J. Math. Oxford 9 1938, 315320.Google Scholar
Hua, L.-K., Improvement of a result of Wright. J. Lond. Math. Soc. (2) 24 1949, 157159.CrossRefGoogle Scholar
Hua, L.-K., Additive Theory of Prime Numbers, American Mathematical Society (Providence, RI, 1965).Google Scholar
Vaughan, R. C., The Hardy–Littlewood Method, Cambridge University Press (Cambridge, 1997).Google Scholar
Vaughan, R. C. and Wooley, T. D., A special case of Vinogradov’s mean value theorem. Acta Arith. 79(3) 1997, 193204.CrossRefGoogle Scholar
Vinogradov, I. M., The method of trigonometrical sums in the theory of numbers. Trav. Inst. Math. Stekloff 23 1947.Google Scholar
Wooley, T. D., On Vinogradov’s mean value theorem. Mathematika 39(2) 1992, 379399.CrossRefGoogle Scholar
Wooley, T. D., A note on simultaneous congruences. J. Number Theory 58(2) 1996, 288297.Google Scholar
Wooley, T. D., Some remarks on Vinogradov’s mean value theorem and Tarry’s problem. Monatsh. Math. 122(3) 1996, 265273.CrossRefGoogle Scholar
Wooley, T. D., Vinogradov’s mean value theorem via efficient congruencing. Ann. of Math. (2) 175(3) 2012, 15751627.Google Scholar
Wooley, T. D., The asymptotic formula in Waring’s problem. Int. Math. Res. Not. IMRN 2012(7) 2012, 14851504.CrossRefGoogle Scholar
Wooley, T. D., Vinogradov’s mean value theorem via efficient congruencing, II. Duke Math. J. 162(4) 2013, 673730.Google Scholar
Wooley, T. D., Translation invariance, exponential sums, and Waring’s problem. In Proc. Int. Congr. Mathematicians (Seoul, Korea, 13–21 August 2014), Vol. II, Kyung Moon Sa (Seoul, 2014), 505529.Google Scholar
Wooley, T. D., Multigrade efficient congruencing and Vinogradov’s mean value theorem. Proc. Lond. Math. Soc. (3) 111(3) 2015, 519560.CrossRefGoogle Scholar
Wooley, T. D., The cubic case of the main conjecture in Vinogradov’s mean value theorem. Adv. Math. 294 2016, 532561.CrossRefGoogle Scholar
Wright, E. M., The Prouhet–Lehmer problem. J. Lond. Math. Soc. (2) 23 1948, 279285.Google Scholar