Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-12T07:56:29.288Z Has data issue: false hasContentIssue false

VARIATIONAL PRINCIPLES FOR WATER WAVES FROM THE VIEWPOINT OF A TIME-DEPENDENT MOVING MESH

Published online by Cambridge University Press:  17 November 2010

Thomas J. Bridges
Affiliation:
Department of Mathematics, University of Surrey, Guildford GU2 7XH, U.K. (email: t.bridges@surrey.ac.uk)
Neil M. Donaldson
Affiliation:
Department of Mathematics, University of Surrey, Guildford GU2 7XH, U.K.
Get access

Abstract

The time-dependent motion of water waves with a parametrically defined free surface is mapped to a fixed time-independent rectangle by an arbitrary transformation. The emphasis is on the general properties of transformations. Special cases are algebraic transformations based on transfinite interpolation, conformal mappings, and transformations generated by nonlinear elliptic partial differential equations. The aim is to study the effect of transformation on variational principles for water waves such as Luke’s Lagrangian formulation, Zakharov’s Hamiltonian formulation, and the Benjamin–Olver Hamiltonian formulation. Several novel features are exposed using this approach: a conservation law for the Jacobian, an explicit form for surface re-parameterization, inner versus outer variations and their role in the generation of hidden conservation laws of the Laplacian. Also some of the differential geometry of water waves becomes explicit. The paper is restricted to the case of planar motion, with a preliminary discussion of the extension to three-dimensional water waves.

Type
Research Article
Copyright
Copyright © University College London 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Benjamin, T. B. and Bridges, T. J., Reappraisal of the Kelvin–Helmholtz problem. Part 1. Hamiltonian structure. J. Fluid Mech. 333 (1997), 301325.CrossRefGoogle Scholar
[2]Benjamin, T. B. and Olver, P. J., Hamiltonian structure, symmetries and conservation laws for water waves. J. Fluid Mech. 125 (1982), 137185.Google Scholar
[3]Bridges, T. J., Periodic patterns, linear instability, symplectic structure and mean-flow dynamics for 3D surface waves. Philos. Trans. R. Soc. Lond. A 354 (1996), 533574.Google Scholar
[4]Bridges, T. J., Multi-symplectic structures and wave propagation. Math. Proc. Cambridge Philos Soc. 121 (1997), 147190.CrossRefGoogle Scholar
[5]Bridges, T. J., Conservation laws in curvilinear coordinates: a short proof of Vinokur’s theorem using differential forms. Appl. Math. Comput. 202 (2008), 882885.Google Scholar
[6]Bridges, T. J. and Donaldson, N. M., Mapping techniques in the theory of water waves, Book manuscript (2010) (draft manuscript).Google Scholar
[7]Bridges, T. J., Hydon, P. E. and Lawson, J. K., Multisymplectic structures and the variational bicomplex. Math. Proc. Cambridge Philos. Soc. 148 (2010), 159178.CrossRefGoogle Scholar
[8]Bridges, T. J., Hydon, P. E. and Reich, S., Vorticity and symplecticity in Lagrangian fluid dynamics. J. Phys. A: Math. Gen. 38 (2005), 14031418.Google Scholar
[9]Byatt-Smith, J. G. B., An integral equation for unsteady surface waves and a comment on the Boussinesq equation. J. Fluid Mech. 49 (1971), 625633.CrossRefGoogle Scholar
[10]Cao, W., Huang, W. and Russell, R. D., A moving mesh method based on the geometric conservation law. SIAM J. Sci. Comput. 19 (2002), 118142.CrossRefGoogle Scholar
[11]Cao, W., Huang, W. and Russell, R. D., Approaches for generating moving adaptive meshes: location versus velocity. Appl. Numer. Math. 47 (2003), 121138.Google Scholar
[12]Challis, N. V. and Burley, D. M., A numerical method for conformal mapping. IMA J. Numer. Anal. 2 (1982), 169181.CrossRefGoogle Scholar
[13]Choi, W. and Camassa, R., Exact evolution equations for surface waves. J. Eng. Mech. 125 (1999), 756760.Google Scholar
[14]Clamond, D. and Grue, J., A fast method for fully nonlinear water-wave computations. J. Fluid Mech. 447 (2001), 337355.CrossRefGoogle Scholar
[15]Dias, F. and Bridges, T. J., The numerical computation of freely propagating time-dependent irrotational water waves. Fluid Dynam. Res. 38 (2006), 803830.Google Scholar
[16]Dyachenko, A. I., Kuznetsov, E. A., Spector, M. D. and Zakharov, V. E., Analytical description of the free surface dynamics of an ideal fluid (canonical formalism and conformal mapping). Phys. Lett. A 221 (1996), 7379.CrossRefGoogle Scholar
[17]Dyachenko, A. I., Zakharov, V. E. and Kuznetsov, E. A., Nonlinear dynamics of free surface of an ideal fluid. Plasma Phys. Rep. 22 (1999), 916928.Google Scholar
[18]Farrashkhalvat, M. and Miles, J. P., Basic Structured Grid Generation, Butterworth-Heinemann (Oxford, 2002).Google Scholar
[19]Forbes, G. W., On variational problems in parametric form. Amer. J. Phys. 59 (1991), 11301140.Google Scholar
[20]Forbes, L. K., Chen, M. J. and Trenham, C. E., Computing unstable periodic waves at the interface of two inviscid fluids in uniform vertical flow. J. Comput. Phys. 221 (2007), 269287.CrossRefGoogle Scholar
[21]Giaquinta, M. and Hildebrandt, S., Calculus of Variations: the Lagrangian Formalism, Springer (Berlin, 1996).Google Scholar
[22]Grant, M. A., Standing Stokes waves of maximum height. J. Fluid Mech. 60 (1973), 593604.CrossRefGoogle Scholar
[23]Longuet-Higgins, M. S., The instabilities of gravity waves of finite amplitude in deep water. I. Superharmonics. Proc. R. Soc. Lond. A 360 (1978), 471488.Google Scholar
[24]Longuet-Higgins, M. S. and Cokelet, E. D., The deformation of steep surface waves on water. I. A numerical method of computation. Proc. R. Soc. Lond. A 350 (1976), 126.Google Scholar
[25]Luke, J. C., A variational principle for a fluid with a free surface. J. Fluid Mech. 27 (1967), 395397.CrossRefGoogle Scholar
[26]Marchenko, A. V., A Hamiltonian approach to the investigation of the potential motions of an ideal fluid. J. Appl. Math. Mech. 59 (1995), 9398.Google Scholar
[27]Seidl, A. and Klose, H., Numerical conformal mapping of a towel-shaped region onto a rectangle. SIAM J. Sci. Stat. Comput. 6 (1985), 833842.CrossRefGoogle Scholar
[28]Shamin, R. V., Dynamics of an ideal fluid with a free surface in conformal variables. J. Math. Sci. 160 (2009), 537678.CrossRefGoogle Scholar
[29]Shyy, W., Udaykumar, H. S., Rao, M. M. and Smith, R. W., Computational Fluid Dynamics with Moving Boundaries, Dover Publications (New York, 1996).Google Scholar
[30]Tanaka, M., The stability of solitary waves. Phys. Fluids 29 (1986), 650655.Google Scholar
[31]Thomas, P. D. and Lombard, C. K., Geometric conservation law and its application to flow computations on moving grids. AIAA J. 17 (1979), 10301037.Google Scholar
[32]Thompson, J. F., A survey of dynamically-adaptive grids in the numerical solution of partial differential equations. Appl. Numer. Math. 1 (1985), 327.CrossRefGoogle Scholar
[33]Thompson, J. F., Soni, B. K and Weatherill, N. P., Handbook of Grid Generation, CRC Press (London, 1999).Google Scholar
[34]Vanden-Broeck, J.-M., Some new gravity waves in water of finite depth. Phys. Fluids 26 (1983), 23852387.CrossRefGoogle Scholar
[35]Voinov, V. V. and Voinov, O. V., Numerical method of calculating nonstationary motions of an ideal incompressible liquid with free surfaces. Sov. Phys. Dokl. 20 (1975), 179180.Google Scholar
[36]Whitney, A. K., The numerical solution of unsteady free surface flows by conformal mapping. In Proc. Second Inter. Conf. on Numer. Fluid Dynamics (ed. Holt, M.), Springer (Berlin, 1971), 458462.Google Scholar
[37]Zakharov, V. E., Stability of periodic waves of finite-amplitude on the surface of a deep fluid. J. Appl. Mech. Tech. Phys. 9 (1968), 333367.Google Scholar