Crossref Citations
This article has been cited by the following publications. This list is generated based on data provided by Crossref.
Colesanti, Andrea
2006.
Functional Inequalities related to the Rogers‐Shephard Inequality.
Mathematika,
Vol. 53,
Issue. 1,
p.
81.
Fradelizi, M.
and
Meyer, M.
2007.
Some functional forms of Blaschke–Santaló inequality.
Mathematische Zeitschrift,
Vol. 256,
Issue. 2,
p.
379.
Lehec, Joseph
2008.
A direct proof of the functional Santaló inequality.
Comptes Rendus. Mathématique,
Vol. 347,
Issue. 1-2,
p.
55.
Artstein-Avidan, Shiri
and
Milman, Vitali
2008.
A new duality transform.
Comptes Rendus. Mathématique,
Vol. 346,
Issue. 21-22,
p.
1143.
Barthe, Franck
and
Kolesnikov, Alexander V.
2008.
Mass Transport and Variants of the Logarithmic Sobolev Inequality.
Journal of Geometric Analysis,
Vol. 18,
Issue. 4,
p.
921.
Artstein-Avidan, Shiri
and
Milman, Vitali
2008.
The concept of duality for measure projections of convex bodies.
Journal of Functional Analysis,
Vol. 254,
Issue. 10,
p.
2648.
Milman, Vitali D.
2008.
Geometry and Dynamics of Groups and Spaces.
Vol. 265,
Issue. ,
p.
647.
Fradelizi, M.
and
Meyer, M.
2008.
Some functional inverse Santaló inequalities.
Advances in Mathematics,
Vol. 218,
Issue. 5,
p.
1430.
Lehec, Joseph
2008.
The symmetric property (τ) for the Gaussian measure.
Annales de la Faculté des sciences de Toulouse : Mathématiques,
Vol. 17,
Issue. 2,
p.
357.
Fradelizi, Matthieu
and
Meyer, Mathieu
2008.
Increasing functions and inverse Santaló inequality for unconditional functions.
Positivity,
Vol. 12,
Issue. 3,
p.
407.
Bobkov, Sergey G.
2010.
Convex bodies and norms associated to convex measures.
Probability Theory and Related Fields,
Vol. 147,
Issue. 1-2,
p.
303.
Böröczky, Károly J.
and
Hug, Daniel
2010.
Stability of the reverse Blaschke–Santaló inequality for zonoids and applications.
Advances in Applied Mathematics,
Vol. 44,
Issue. 4,
p.
309.
Böröczky, Károly J.
2010.
Stability of the Blaschke–Santaló and the affine isoperimetric inequality.
Advances in Mathematics,
Vol. 225,
Issue. 4,
p.
1914.
Artstein-Avidan, S.
and
Milman, V.
2010.
A characterization of the support map.
Advances in Mathematics,
Vol. 223,
Issue. 1,
p.
379.
Fradelizi, M.
Gordon, Y.
Meyer, M.
and
Reisner, S.
2010.
The case of equality for an inverse Santaló functional inequality.
advg,
Vol. 10,
Issue. 4,
p.
621.
Fradelizi, M.
and
Meyer, M.
2010.
Functional inequalities related to Mahler’s conjecture.
Monatshefte für Mathematik,
Vol. 159,
Issue. 1-2,
p.
13.
Kim, Jaegil
Yaskin, Vladyslav
and
Zvavitch, Artem
2011.
The geometry of p-convex intersection bodies.
Advances in Mathematics,
Vol. 226,
Issue. 6,
p.
5320.
Cordero-Erausquin, Dario
and
Klartag, Bo’az
2012.
Geometric Aspects of Functional Analysis.
Vol. 2050,
Issue. ,
p.
151.
Rotem, Liran
2012.
Characterization of self-polar convex functions.
Bulletin des Sciences Mathématiques,
Vol. 136,
Issue. 7,
p.
831.
Artstein-Avidan, S.
Klartag, B.
Schütt, C.
and
Werner, E.
2012.
Functional affine-isoperimetry and an inverse logarithmic Sobolev inequality.
Journal of Functional Analysis,
Vol. 262,
Issue. 9,
p.
4181.