Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-11T03:58:37.983Z Has data issue: false hasContentIssue false

A projective formalism applied to topological and probabilistic event structures

Published online by Cambridge University Press:  01 August 2007

SAMY ABBES*
Affiliation:
University of Cambridge Computer Laboratory, William Gates Building, 15 J.J. Thomson Avenue, Cambridge CB3 0FD, U.K.

Abstract

This paper introduces projective systems for topological and probabilistic event structures. The projective formalism is used for studying the domain of configurations of a prime event structure and its space of maximal elements. This is done from both a topological and a probabilistic viewpoint. We give probability measure extension theorems in this framework.

Type
Paper
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbes, S. and Benveniste, A. (2006) Probabilistic true-concurrency models. Branching cells and distributed probabilities for event structures. Information and Computation 204 231274.CrossRefGoogle Scholar
Abbes, S. and Keimel, K. (2006) Projective topology on bifinite domains and applications. Theoretical Computer Science 365 (3)171183.CrossRefGoogle Scholar
Alvarez-Manilla, M., Edalat, A. and Saheb-Djahromi, N. (2000) An extension result for continuous valuations. Journal of London Mathematical Society 61 (2)629640.CrossRefGoogle Scholar
Birkhoff, G. (1940) Lattice Theory (third edition 1967), Publications of AMS.CrossRefGoogle Scholar
Bourbaki, N. (1961) Topologie Générale, Chapitre i, éléments de mathématiques, fascicule ii, Hermann.Google Scholar
Bourbaki, N. (1969) Intégration, Chapitre ix, éléments de mathématiques, fascicule xxxv, Hermann.Google Scholar
Gierz, G., Hofmann, K. H., Keimel, K., Lawson, J. D., Misolve, M. W. and Scott, D. S. (2003) Continuous Lattices and Domains, Cambridge University Press.CrossRefGoogle Scholar
Horn, A. and Tarski, A. (1948) Measures in boolean algebra. Transactions of American Mathematical Society 64 (3)467497.CrossRefGoogle Scholar
Jones, C. and Plotkin, G. (1989) A probabilistic powerdomain of evaluations. In: Logic in Computer Science, IEEE Computer Society Press.Google Scholar
Kahn, G. and Plotkin, G. (1978) Domaines concrets. Rapport de recherches 336, INRIA.Google Scholar
Katoen, J. P., Baier, C. and Letella, D. (2001) Metric semantics for true-concurrent real time. Theoretical Computer Science 254 (1)501542.CrossRefGoogle Scholar
Keimel, K. and Lawson, J. D. (2005) Measure extension theorems on T0-spaces. Topology and Applications 149 5783.CrossRefGoogle Scholar
Kwiatowska, M. Z. (1990) A metric for traces. Information Processing Letter 35 129135.CrossRefGoogle Scholar
Lawson, J. D. (1982) Valuations on continuous lattices. In: Hoffmann, R.-E. (ed.) Continuous Lattices and Related Topics. Mathematik Arbeitspapiere 27, Bremen Universität 204225.Google Scholar
Nielsen, M., Plotkin, G. and Winskel, G. (1980) Petri nets, event structures and domains, part 1. Theoretical Computer Science 13 86108.Google Scholar
Norberg, T. and Vervaat, W. (1997) Capacities on non-Haussdorff spaces. In: Vervaat, W. and Holwerda, H. (eds.) Probability and lattices. CWI Tracts 110Google Scholar
Schwartz, L. (1973) Radon Measures on Arbitrary Topological Spaces and Cylindrical Measures, Oxford University Press.Google Scholar
Varacca, D., Völzer, H. and Winskel, G. (2004) Probabilistic event structures and domains. In: Proceedings of CONCUR'04. Springer-Verlag Lecture Notes in Computer Science 3170 481496.CrossRefGoogle Scholar