Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-26T22:27:21.775Z Has data issue: false hasContentIssue false

Positivity of some basic cosine sums

Published online by Cambridge University Press:  24 October 2008

Gavin Brown
Affiliation:
University of Adelaide, GPO Box 498, Adelaide SA 5001, Australia
Kun-Yang Wang
Affiliation:
Department of Mathematics, Beijing Normal University, Beijing 100875, People's Republic of China
David C. Wilson
Affiliation:
School of Mathematics, University of New South Wales, PO Box 1, Kensington NSW 2033, Australia

Abstract

We show that all partial sums of 1 + σk−α cos kθ are non-negative for α > α0, where 0·308443 < α0 < 0·308444 and α0 is the unique root of the equation

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Belov, A. S.. Coefficients of trigonometric series with nonnegative partial sums. Mat. Zametki 41 (1987), 152158.Google Scholar
[2]Brown, G. and Wang, K.-Y.. An extension of the Fejér-Jackson inequality, preprint (1991).Google Scholar
[3]Burnside, W. S. and Panton, A. W.. Theory of Equations (Hodges, Figgis & Co., Dublin, 1886).Google Scholar
[4]Gronwall, T. H.. Über die Gibbsche Erscheimmg und die trigonometrischen Summen . Math. Ann. 72 (1912), 228243.Google Scholar
[5]Jackson, D.. Über eine trigonometrische Summe. Rend. Circ. Mat. Palermo 32 (1911), 257262.Google Scholar
[6]Wolfram, S.. Mathematica: a System for Doing Mathematics by Computer (Addison-Wesley, Redwood City, 1988).Google Scholar
[7]Young, W. H.. On a certain series of Fourier. Proc. London Math. Soc. 11 (1912), 357366.Google Scholar
[8]Zygmund, A.. Trigonometric Series, 2nd edn (Cambridge University Press 1959).Google Scholar