Hostname: page-component-cb9f654ff-plnhv Total loading time: 0.001 Render date: 2025-08-28T03:49:22.373Z Has data issue: false hasContentIssue false

On the symmetric braid index of ribbon knots

Published online by Cambridge University Press:  05 August 2025

VITALIJS BREJEVS
Affiliation:
Riga, Latvia e-mail: brejka@gmail.com
FERIDE CEREN KÖSE
Affiliation:
Department of Mathematics, University of Georgia e-mail: fceren@uga.edu

Abstract

We define the symmetric braid index $b_s(K)$ of a ribbon knot K to be the smallest index of a braid whose closure yields a symmetric union diagram of K, and derive a Khovanov-homological characterisation of knots with $b_s(K)$ at most three. As applications, we show that there exist knots whose symmetric braid index is strictly greater than the braid index, and deduce that every chiral slice knot with determinant one has braid index at least four. We also calculate bounds for $b_s(K)$ for prime ribbon knots with at most 11 crossings.

Information

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Cambridge Philosophical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Brejevs, V.. On slice alternating 3-braid closures. Pacific J. Math. 324 (2023), 4970.10.2140/pjm.2023.324.49CrossRefGoogle Scholar
Brejevs, V. and Simone, J.. On chain link surgeries bounding rational homology balls and $\chi$ -slice 3-braid closures. Preprint: ArXiv:2301.06573 (2024).10.1090/tran/9508CrossRefGoogle Scholar
Burde, G. and Zieschang, H.. Knots . (Walter de Gruyter, 2003).Google Scholar
Culler, M., Dunfield, N. M., Goerner, M. and Weeks, J. R.. SnapPy, a computer program for studying the geometry and topology of 3-manifolds (2024).Google Scholar
Kauffman, L.. State models and the Jones polynomial. Topology 3 (1987), 395407.10.1016/0040-9383(87)90009-7CrossRefGoogle Scholar
Kinoshita, S. and Terasaka, H.. On unions of knots. Osaka Math. J. 9 (1957), 131153.Google Scholar
Köse, F. C.. Knot invariants and symmetric unions. In preparation (2024).Google Scholar
Köse, F. C.. On amphichirality of symmetric unions. Preprint: ArXiv:2111.08765 (2021).Google Scholar
Kronheimer, P. B. and Mrowka, T. S.. Khovanov homology is an unknot-detector. Publ. Math. Inst. Hautes Études Sci. 113 (2011), 97208.10.1007/s10240-010-0030-yCrossRefGoogle Scholar
Lamm, C.. Symmetric union presentations for 2-bridge ribbon knots. J. Knot Theory Ramifications 30(12), paper no. 2141009, 11 (2021).Google Scholar
Lamm, C.. Symmetric unions and ribbon knots. Osaka J. Math. 37(3) (2000), 537550.Google Scholar
Lamm, C.. The search for nonsymmetric ribbon knots. Exp. Math. 30(3) (2019), 349363.10.1080/10586458.2018.1540313CrossRefGoogle Scholar
Lisca, P.. On 3–braid knots of finite concordance order. Trans. Amer. Math. Soc. 369 (7) (2017), 5087–5112.10.1090/tran/6888CrossRefGoogle Scholar
Livingston, C. and Moore, A. H.. KnotInfo: Table of knot invariants (2024).Google Scholar
Moore, A. H.. Symmetric unions without cosmetic crossing changes. In Adv. Math. Sci. Assoc. Women Math. Ser. vol. 6 (Springer, 2016), pp. 103116.Google Scholar
Murasugi, K.. Jones polynomials and classical conjectures in knot theory. Topology 26(2) (1987), 187194.10.1016/0040-9383(87)90058-9CrossRefGoogle Scholar
Simone, J.. Classification of torus bundles that bound rational homology circles. Algebr. Geom. Topol. 23(6) (2023), 24492518.10.2140/agt.2023.23.2449CrossRefGoogle Scholar
Thistlethwaite, M.. A spanning tree expansion of the Jones polynomial. Topology 26(3) (1987), 297309.10.1016/0040-9383(87)90003-6CrossRefGoogle Scholar
Watson, L.. Knots with identical Khovanov homology. Algebr. Geom. Topol. 7(3) (2007), 13891407.10.2140/agt.2007.7.1389CrossRefGoogle Scholar