Published online by Cambridge University Press: 24 October 2008
The method of integral equations is the most familiar method of proving existence theorems for the Helmholtz equation of acoustics. The wave potentials are expressed as surface distributions of wave sources (for the Neumann problem) or wave dipoles (for the Dirichlet problem). By a wave source is meant the free-space wave source. The source and dipole strengths for the exterior potentials are found to be solutions of Fredholm integral equations of the second kind which are, however, singular at a certain discrete set of frequencies corresponding to eigensolutions of the interior problems. The existence of exterior solutions at the expected frequencies can still be shown, but the proof involves a detailed and complicated study of the interior solutions. It is physically evident that this difficulty arises from the method of solution and not from the nature of the problem.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.