Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-11T03:36:15.536Z Has data issue: false hasContentIssue false

On Tasoev's continued fractions

Published online by Cambridge University Press:  12 March 2003

TAKAO KOMATSU
Affiliation:
Faculty of Education, Mie University, Tsu, Mie 514-8507, Japan. e-mail: komatsu@edu.mie-u.ac.jp

Abstract

Let $a$ be a positive integer with $a > 1$. We show \[ [0;a,a^2,a^3,a^4,\ldots]=\frac{\sum\nolimits^{\infty}_{s=0}a^{-(s+1)^2}\prod\nolimits^s_{i=1}(a^{2i}-1)^{-1}}{\sum\nolimits^{\infty}_{s=0}a^{-s^2}\prod\nolimits^s_{i=1}(a^{2i}-1)^{-1}} \] and \[ [0;a,a,a^2,a^2,a^3,a^3,\ldots]=\frac{\sum\nolimits^{\infty}_{s=0}a^{-\frac{(s+1)(s+2)}{2}}\prod\nolimits^s_{i=1}(a^{i}-1)^{-1}}{\sum\nolimits^{\infty}_{s=0}a^{-\frac{s(s+1)}{2}}\prod\nolimits^s_{i=1}(a^{i}-1)^{-1}} \] A more general case is discussed.

Type
Research Article
Copyright
2003 Cambridge Philosophical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)