Hostname: page-component-cb9f654ff-d5ftd Total loading time: 0 Render date: 2025-08-29T06:34:04.520Z Has data issue: false hasContentIssue false

On decoupling and restriction estimates

Published online by Cambridge University Press:  07 August 2025

CHANGKEUN OH*
Affiliation:
Department of Mathematical Sciences and RIM, Seoul National University, Republic of Korea. e-mail: changkeun@snu.ac.kr

Abstract

In this short paper, we prove that the restriction conjecture for the (hyperbolic) paraboloid in $\mathbb{R}^{d}$ implies the $l^p$-decoupling theorem for the (hyperbolic) paraboloid in $\mathbb{R}^{2d-1}$. In particular, this gives a simple proof of the $l^p$ decoupling theorem for the (hyperbolic) paraboloid in $\mathbb{R}^3$.

MSC classification

Information

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Cambridge Philosophical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Bourgain, J. and Demeter, C.. The proof of the $l^2$ decoupling conjecture. Ann. of Math. (2) 182(1) (2015), 351389.10.4007/annals.2015.182.1.9CrossRefGoogle Scholar
Bourgain, J. and Demeter, C.. Decouplings for curves and hypersurfaces with nonzero Gaussian curvature. J. Anal. Math. 133 (2017), 279311.10.1007/s11854-017-0034-3CrossRefGoogle Scholar
Fefferman, C.. Inequalities for strongly singular convolution operators. Acta Math. 124 (1970), 936.10.1007/BF02394567CrossRefGoogle Scholar
Fan, C., Staffilani, G., Wang, H. and Wilson, B.. On a bilinear Strichartz estimate on irrational tori. Anal. PDE. 11(4) 2018, 919–944.10.2140/apde.2018.11.919CrossRefGoogle Scholar
Guth, L., Maldague, D. and Oh, C.. Small cap decoupling for the paraboloid in $\mathbb{R}^n$ , 2024.Google Scholar
Guth, L.. Decoupling estimates in Fourier analysis. In ICM—International Congress of Mathematicians, vol. 2. Plenary lectures pages 1054–1089. (EMS Press, Berlin, 2023), pp. 1054--1089.10.4171/icm2022/172CrossRefGoogle Scholar
Hickman, J. and Iliopoulou, M.. Sharp $L^p$ estimates for oscillatory integral operators of arbitrary signature. Math. Z. 301(1) 2022, 11431189.10.1007/s00209-021-02944-yCrossRefGoogle Scholar
Stein, E. M.. Some problems in harmonic analysis. In Harmonic Analysis in Euclidean Spaces (Proc. Sympos. Pure Math., Williams Coll., Williamstown, Mass., 1978), Part 1, Proc. Sympos. Pure Math., XXXV, Part 1 (Amer. Math. Soc., Providence, R.I., 1979), pp. 3–20.10.1090/pspum/035.1/545235CrossRefGoogle Scholar
Wolff, T.. Local smoothing type estimates on $L^p$ for large p. Geom. Funct. Anal. 10(5) (2000), 1237–1288.10.1007/PL00001652CrossRefGoogle Scholar
Wang, H. and Wu, S.. Restriction estimates using decoupling theorems and two-ends furstenberg inequalities, 2024.Google Scholar