Hostname: page-component-54dcc4c588-scsgl Total loading time: 0 Render date: 2025-09-25T13:00:16.982Z Has data issue: false hasContentIssue false

On congruence subgroups generated by two parabolic rational matrices

Published online by Cambridge University Press:  08 August 2025

CARL-FREDRIK NYBERG-BRODDA*
Affiliation:
June E. Huh Centre for Mathematical Challenges (KIAS), 85 Hoegi-ro, Dongdaemun-gu 02455 Seoul, Republic of Korea. e-mail: cfnb@kias.re.kr

Abstract

We study the freeness problem for multiplicative subgroups of $\operatorname{SL}_2(\mathbb{Q})$. For $q = r/p$ in $\mathbb{Q} \cap (0,4)$, where p is prime and $\gcd(r,p)=1$, we initiate the study of the algebraic structure of the group $\Delta_q$ generated by

\[A = \begin{pmatrix}1 & 0 \\ 1 & 1\end{pmatrix} \text{ and } Q_q = \begin{pmatrix}1 & q \\ 0 & 1\end{pmatrix}.\]
We introduce the conjecture that $\Delta_{r/p} = \overline{\Gamma}_1^{(p)}(r)$, the congruence subgroup of $\operatorname{SL}_2(\mathbb{Z}[{1}/{p}])$ consisting of all matrices with upper right entry congruent to 0 mod r and diagonal entries congruent to 1 mod r. We prove this conjecture when $r \leq 4$ and for some cases when $r = 5$. Furthermore, conditional on a strong form of Artin’s conjecture on primitive roots, we also prove the conjecture when $r \in \{ p-1, p+1, (p+1)/2 \}$. In all these cases, this gives information about the algebraic structure of $\Delta_{r/p}$: it is isomorphic to the fundamental group of a finite graph of virtually free groups, and has finite index $J_2(r)$ in $\operatorname{SL}_2(\mathbb{Z}[{1}/{p}])$, where $J_2(r)$ denotes the Jordan totient function.

Information

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Cambridge Philosophical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Detinko, A. S., Flannery, D. L.. Freeness, A. H. and s-arithmeticity of rational Möbius groups. Preprint: ArXiv:2203.17201 (2022).10.1090/conm/783/15734CrossRefGoogle Scholar
Behr, H. and Mennicke, J.. A presentation of the groups $\textrm{PSL}(2,\,p)$ . Canadian J. Math. 20 (1968), 14321438.10.4153/CJM-1968-144-7CrossRefGoogle Scholar
Beyl, F. R.. The Schur multiplicator of $\operatorname{SL}(2,{\bf Z}/m{\bf Z})$ and the congruence subgroup property. Math. Z. 191 (1986), 2342.Google Scholar
Brenner, J. L.. Quelques groupes libres de matrices. C. R. Acad. Sci. Paris 241 (1955), 16891691.Google Scholar
Brenner, J. L. and Charnow, A.. Free semigroups of $2\times 2$ matrices. Pacific J. Math. 77 (1978), 5769.CrossRefGoogle Scholar
Brenner, J. L., MacLeod, R. A., and Olesky, D. D.. Non-free groups generated by two $2\times 2$ matrices. Canadian J. Math. 27 (1975), 237245.10.4153/CJM-1975-029-5CrossRefGoogle Scholar
Brody, N., Fisher, D., Mj, M., and van Limbeek, W.. Greenberg longer Shalom’s commensurator hypothesis and applications. ArXiv:2308.07785 (2023).Google Scholar
Brown, K. S. 1982. Cohomology of Groups, Graduate Texts in Math. vol 87 (Springer-Verlag, new YOuk-Berlin, 1982)10.1007/978-1-4684-9327-6CrossRefGoogle Scholar
Chang, B., Jennings, S. A., and Ree, R.. On certain pairs of matrices which generate free groups. Canadian J. Math. 10 (1958), 279284.10.4153/CJM-1958-029-2CrossRefGoogle Scholar
Charnow, A.. A note on torsion free groups generated by pairs of matrices. Canad. Math. Bull. 17 (1974/75), 747748.10.4153/CMB-1974-134-4CrossRefGoogle Scholar
Doniyakhi, K. A.. Linear representation of the free product of cyclic groups. Leningrad State Univ. Annals [Uchenye Zapiski] Math. Ser. 10 (1940), 158165.Google Scholar
Farbman, S. P.. Non-free two-generator subgroups of ${\operatorname{SL}}_2(\mathbf{Q})$ . Publ. Mat. 39 (1995), 379391.CrossRefGoogle Scholar
Fuchs-Rabinovich, D. I.. On a certain representation of a free group. Leningrad State Univ. Annals [Uchenye Zapiski] Math. Ser. 10 (1940), 154157.Google Scholar
Gilman, J.. The structure of two-parabolic space: parabolic dust and iteration. Geom. Dedicata 131 (2008), 2748.CrossRefGoogle Scholar
Gupta, R. and Murty, M. R.. A remark on Artin’s conjecture. Invent. Math. 78 (1984), 127130.CrossRefGoogle Scholar
Heath-Brown, D. R.. Artin’s conjecture for primitive roots. Quart. J. Math. Oxford Ser. (2) 37 (1986), 2738.10.1093/qmath/37.1.27CrossRefGoogle Scholar
Hooley, C.. On Artin’s conjecture. J. Reine Angew. Math. 225 (1967), 209220.Google Scholar
Ignatov, Y. A.. Rational nonfree points of the complex plane. In Algorithmic Problems in the Theory of Groups and Semigroups (Russian), (Tulsk. Gos. Ped. Inst., Tula, 19860 , pp. 72-80, 127. 1986 Google Scholar
Jordan, C. . Traité des Substitutions et des équations Algébriques. (Gauthier-Villars, 1870)Google Scholar
Keen, L. and Series, C.. The Riley slice of Schottky space. Proc. London Math. Soc. (3) 69 (1994), 72–90.Google Scholar
Kim, S. h. and Koberda, T.. Non-freeness of groups generated by two parabolic elements with small rational parameters. Michigan Math. J. 71 (2022), 809–833.Google Scholar
Lyndon, R. C. and Ullman, J. L.. Groups generated by two parabolic linear fractional transformations. Canadian J. Math. 21 (1969), 13881403.10.4153/CJM-1969-153-1CrossRefGoogle Scholar
Magnus, W.. Untersuchungen über einige unendliche diskontinuierliche Gruppen. Math. Ann. 105 (1931), 5274.CrossRefGoogle Scholar
Markov, A.. On certain insoluble problems concerning matrices. Doklady Akad. Nauk SSSR (N.S.) 57 (1947), 539542.Google Scholar
Mazurov, V. D. and Khukhro, E. I.. Unsolved problems in Group Theory, the Kourovka Notebook (no. 20), (2023).Google Scholar
Mennicke, J.. On Ihara’s modular group. Invent. Math. 4 (1967), 202228.10.1007/BF01425756CrossRefGoogle Scholar
Merzljakov, Y. I.. Matrix representations of free groups. Dokl. Akad. Nauk SSSR 238 (1978), 527530.Google Scholar
Merzlyakov, Y. I.. Linear groups. In Algebra, Topology, Geometry, Vol. 16 (Russian). Itogi Nauki i Tekhniki, 247. (Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow. 1978), pp. 35-89.Google Scholar
Moree, P.. Artin’s primitive root conjecture—a survey. Integers 12 (2012), 13051416.10.1515/integers-2012-0043CrossRefGoogle Scholar
Newman, M. F., editor. Proceedings of the Second International Conference on the Theory of Groups. Lecture Notes in Math. Vol. 372. (Springer-Verlag, Berlin-New York, 1974. Held at the Australian National University, Canberra, (August 13–24, 1973), With an introduction by B. H. Neumann.Google Scholar
Nyberg-Brodda, C.-F.. The abelianisation of $\operatorname{SL}_2(\Bbb{Z}[\frac{1}{m}])$ . J. Algebra 660 (2024), 614618.10.1016/j.jalgebra.2024.07.005CrossRefGoogle Scholar
Sanov, I. N.. Solution of Burnside’s problem for exponent 4. Leningrad State Univ. Annals [Uchenye Zapiski] Math. Ser. 10 (1940), 166170.Google Scholar
Sanov, I. N.. A property of a representation of a free group. Doklady Akad. Nauk SSSR (N.S.) 57 (1947), 657659.Google Scholar
Serre, J.-P.. Le problème des groupes de congruence pour SL2. Ann. of Math. (2) 92 (1970), 489527.CrossRefGoogle Scholar
Serre, J.-P.. Trees. (Springer-Verlag, Berlin-New York 1980). Translated from the French by John Stillwell.Google Scholar
Smilga, I.. New sequences of non-free rational points. C. R. Math. Acad. Sci. Paris 359 (2021), 983989.10.5802/crmath.230CrossRefGoogle Scholar