Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-26T21:49:13.621Z Has data issue: false hasContentIssue false

Invariant domains and singularities

Published online by Cambridge University Press:  24 October 2008

Walter Bergweiler
Affiliation:
Lehrstuhl II für Mathematik, RWTH Aachen, D-52056 Aachen, Germany*

Abstract

Let U be an invariant component of the Fatou set of an entire transcendental function f such that the iterates of f tend to ∞ in U. Let P(f) be the closure of the set of the forward orbits of all critical and asymptotic values of f. We show that there exists a sequence pnP(f) such that dist(pn, U) = o(|pn|), where dist(·, ·) denotes Euclidean distance. On the other hand, we give an example where dist (P(f), U) > 0. In this example, U is bounded by a Jordan curve.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Baker, I. N.. Limit functions and sets of non-normality in iteration theory. Ann. Acad. Sci. Fenn. Ser. A I Math., no. 467 (1970).Google Scholar
[2]Baker, I. N.. The domains of normality of an entire function. Ann. Acad. Sci. Fenn. Ser. A I Math. 1 (1975), 277283.Google Scholar
[3]Baker, I. N.. Iteration of entire functions: an introductory survey. In Lectures on complex analysis (World Scientific, 1987), pp. 117.Google Scholar
[4]Baker, I. N.. Wandering domains for maps of the punctured plane. Ann. Acad. Sci. Fenn. Ser. A I Math. 12 (1987), 191198.Google Scholar
[5]Baker, I. N.. Infinite limits in the iteration of entire functions. Ergodic Theory Dynamical Systems 8 (1988), 503507.Google Scholar
[6]Baker, I. N. and Weinreich., J.Boundaries which arise in the iteration of entire functions. Rev. Roumaine Math. Pures Appl. 36 (1991), 413420.Google Scholar
[7]Beardon., A. F.Iteration of rational functions. Graduate texts in mathematics 132 (Springer, 1991).CrossRefGoogle Scholar
[8]Bergweiler., W.Iteration of meromorphic functions. Bull. Amer. Math. Soc. (N.S.) 29 (1993), 151188.CrossRefGoogle Scholar
[9]Carleson, L. and Gamelin., T. W.Complex dynamics. (Springer, 1993).CrossRefGoogle Scholar
[10]Douady, A. and Hubbard., J. H.On the dynamics of polynomial-like mappings. Ann. Sci. École Norm. Sup. (4) 18 (1985), 287343.CrossRefGoogle Scholar
[11]Eremenko, A. E. and Lyubich., M. Yu.Examples of entire functions with pathological dynamics. J. London Math. Soc. (2) 36 (1987), 458468.CrossRefGoogle Scholar
[12]Eremenko, A. E. and Lyubich., M. Yu.The dynamics of analytic transforms. Leningrad Math. J. 1 (1990), 563634.Google Scholar
[13]Eremenko, A. E. and Lyubich., M. Yu.Dynamical properties of some classes of entire functions. Ann. Inst. Fourier (Grenoble) 42 (1992), 9891020.CrossRefGoogle Scholar
[14]Herman., M.Are there critical points on the boundary of singular domains? Comm. Math. Phys. 99 (1985), 593612.Google Scholar
[15]Pommerenke., chr.Univalent functions (Vandenhoeck & Ruprecht, 1975).Google Scholar
[16]Stallard., G. M.Entire functions with Julia sets of zero measure. Math. Proc. Cambridge Philos. Soc. 108 (1990), 551557.Google Scholar
[17]Steinmetz., N.Rational iteration. Studies in Mathematics 16 (de Gruyter, 1993).CrossRefGoogle Scholar