Hostname: page-component-65b85459fc-9mpch Total loading time: 0 Render date: 2025-10-18T00:54:21.621Z Has data issue: false hasContentIssue false

Infinitely many standard trisection diagrams for Gluck twisting

Published online by Cambridge University Press:  16 October 2025

TSUKASA ISOSHIMA*
Affiliation:
Research and Education Center for Natural Sciences, Keio University, 4-1-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8521, Japan. e-mail: isoshima@keio.jp

Abstract

Gay and Meier asked if a trisection diagram for the Gluck twist on a spun or twist-spun 2-knot in $S^4$ obtained by a certain method is standard. In this paper, we show that the trisection diagram for the Gluck twist on the spun $(p+1,p)$-torus knot is standard, where p is any integer greater than or equal to 2.

MSC classification

Information

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Cambridge Philosophical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Castro, N. A.. Relative trisections of smooth 4-manifolds with boundary. PhD. thesis. University of Georgia (2016).Google Scholar
Castro, N. A., Gay, D. T. and Pinzón-Caicedo, J.. Diagrams for relative trisections. Pacific J. Math. 294(2) (2018), 275305.10.2140/pjm.2018.294.275CrossRefGoogle Scholar
Farb, B. and Margalit, D.. A primer on mapping class groups. Princeton Math. Ser. vol. 49 (Princeton University Press, Princeton, NJ, 2011).10.1515/9781400839049CrossRefGoogle Scholar
Freedman, M. H.. The topology of four-dimensional manifolds. J. Differential Geom. 17 (1982), 357453.Google Scholar
Gay, D. and Kirby, R.. Trisecting 4-manifolds. Geom. Topol. 20(6) (2016), 30973132.10.2140/gt.2016.20.3097CrossRefGoogle Scholar
Gay, D. and Meier, J.. Doubly pointed trisection diagrams and surgery on 2-knots. Math. Proc. Camb. Phil. Soc. 172(1) (2022), 163195.10.1017/S0305004121000165CrossRefGoogle Scholar
Gluck, H.. The embedding of two-spheres in the four-sphere. Trans. Amer. Math. Soc. 104 (1962), 308333.10.1090/S0002-9947-1962-0146807-0CrossRefGoogle Scholar
Gordon, C. M.. Knots in the 4-sphere. Comment. Math. Helv. 51 December (1976) 585596.10.1007/BF02568175CrossRefGoogle Scholar
Islambouli, G.. Nielsen equivalence and trisections. Geom. Dedicata 214 (2021), 303317.10.1007/s10711-021-00617-yCrossRefGoogle Scholar
Isoshima, T.. Trisections obtained by trivially regluing surface-knots. Geom. Dedicata 218(3) (2021), Paper No. 71, 19.10.1007/s10711-024-00919-xCrossRefGoogle Scholar
Isoshima, T. and Ogawa, M.. Trisections induced by the Gluck surgery along certain spun knots. J. Knot Theory Ramifications 33(3) (2024), Paper No. 2450007.10.1142/S021821652450007XCrossRefGoogle Scholar
Katanaga, A., Saeki, O., Teragaito, M. and Yamada, Y.. Gluck surgery along a 2-sphere in a 4-manifold is realized by surgery along a projective plane. Michigan Math. J. 46(3) (1999), 555571.Google Scholar
Kim, S. and Miller, M.. Trisections of surface complements and the Price twist. Algebr. Geom. Topol. 20(1) (2020), 343373.10.2140/agt.2020.20.343CrossRefGoogle Scholar
Meier, J.. Trisections and spun four-manifolds. Math. Res. Lett. 25(5) (2018), 14971524.10.4310/MRL.2018.v25.n5.a7CrossRefGoogle Scholar
Meier, J., Schirmer, T. and Zupan, A.. Classification of trisections and the generalized property R conjecture. Proc. Amer. Math. Soc. 144(11) (2016), 49834997.10.1090/proc/13105CrossRefGoogle Scholar
Meier, J. and Zupan, A.. Bridge trisections of knotted surfaces in $S^4$ . Trans. Amer. Math. Soc. 369(10) (2017), 73437386.10.1090/tran/6934CrossRefGoogle Scholar
Meier, J. and Zupan, A.. Bridge trisections of knotted surfaces in 4-manifolds. Proc. Natl. Acad. Sci. USA 115(43) (2018), 1088010886.10.1073/pnas.1717171115CrossRefGoogle Scholar
Naylor, P.. Trisection diagrams and twists of 4-manifolds. C. R. Math. Acad. Sci. Paris 360 (2022), 845866.10.5802/crmath.350CrossRefGoogle Scholar
Ording, P.. Constructing doubly-pointed Heegaard diagrams compatible with (1,1) knots. J. Knot Theory Ramifications 22(11) (2013), 1350071, 26.Google Scholar