Hostname: page-component-cb9f654ff-mx8w7 Total loading time: 0 Render date: 2025-08-23T09:40:51.407Z Has data issue: false hasContentIssue false

The higher direct images of locally constant group schemes from the Kummer log flat topology to the classical flat topology

Published online by Cambridge University Press:  04 August 2025

HEER ZHAO*
Affiliation:
Institute for Advanced Study in Mathematics, Harbin Institute of Technology, Harbin 150001, P. R. China. e-mail: heer.zhao@gmail.com

Abstract

Let S be a fine and saturated (fs) log scheme, and let F be a group scheme over the underlying scheme of S which is étale locally representable by (1) a finite dimensional $\mathbb{Q}$-vector space, or (2) a finite rank free abelian group, or (3) a finite abelian group. We give a full description of all the higher direct images of F from the Kummer log flat site to the classical flat site. In particular, we show that: in case (1) the higher direct images of F vanish; and in case (2) the first higher direct image of F vanishes and the nth ($n\gt 1$) higher direct image of F is isomorphic to the $(n-1)$-th higher direct image of $F\otimes_{{\mathbb Z}}{\mathbb Q}/{\mathbb Z}$. In the end, we make some computations when the base is a standard henselian log trait or a Dedekind scheme endowed with the log structure associated to a finite set of closed points.

Information

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Cambridge Philosophical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Artin, M.. Gro thendieck topologies: notes on a seminar. Harvard University, Dept. of Mathematics (1962).Google Scholar
Colliot-Thélene, J.-L. and Skorobogatov, A. N.. The Brauer–Grothendieck Group. Ergeb. Math. Grenzgeb. 3. Folge, vol. 71 (Springer, 2021).10.1007/978-3-030-74248-5_3CrossRefGoogle Scholar
Hatcher, A.. Algebraic Topology. (Cambridge University Press Cambridge, 2002).Google Scholar
Illusie, L.. An overview of the work of K. Fujiwara, K. Kato and C. Nakayama on logarithmic étale cohomology. Astérisque 279 (2002), 271–322. Cohomologies p-adiques et applications arithmétiques, II.Google Scholar
Kato, K.. Logarithmic structures of Fontaine-Illusie. II — logarithmic flat topology. Tokyo J. Math. 44 (2021), 125155.Google Scholar
Kajiwara, T., Kato, K. and Nakayama, C.. Logarithmic abelian varieties. Nagoya Math. J. 189 (2008), 63–138.Google Scholar
Kajiwara, T., Kato, K. and Nakayama, C.. Logarithmic abelian varieties, part IV: proper models. Nagoya Math. J. 219 (2015), 9–63.Google Scholar
Kato, K. and Nakayama, C.. Log Betti cohomology, log étale cohomology, and log de Rham cohomology of log schemes over C. Kodai Math. J. 22(2) (1999), 161–186.Google Scholar
Milne, J. S.. Étale Cohomology, Princeton Math. Ser. vol. 33.(Princeton University Press, Princeton, N.J., 1980).Google Scholar
Milne, J. S.. Arithmetic Duality Theorems. (Charleston, SC: BookSurge, LLC, 2006).Google Scholar
Nizioł, W.. K-theory of log-schemes. I. Doc. Math. 13 (2008), 505–551.Google Scholar
Olsson, M. C.. On Faltings’ method of almost étale extensions. In Algebraic Geometry—Seattle 2005. Part 2, volume 80 of Proc. Sympos. Pure Math. vol.80 (Amer. Math. Soc., Providence, RI, 2009), pp. 811936.10.1090/pspum/080.2/2483956CrossRefGoogle Scholar
Serre, J.-P.. Galois Cohomology. Monogr. Math.( Springer-Verlag, Berlin, english edition, 2002). Translated from the French by Patrick Ion and revised by the author.Google Scholar
The Stacks Project Authors. Stacks Project. http://stacks.math.columbia.edu, (2025).Google Scholar
Würthen, M. and Zhao, H.. Log p-divisible groups associated with log 1-motives. Canad. J. Math. 76 (2024), 946–983.Google Scholar
Zhao, H.. Log abelian varieties over a log point. Doc. Math. 22 (2017), 505–550.Google Scholar
Zhao, H.. Comparison of Kummer logarithmic topologies with classical topologies. J. Inst. Math. Jussieu 22 (2023), 1083–1117.Google Scholar
Zhao, H.. Comparison of kummer logarithmic topologies with classical topologies II. Preprint: arXiv: 2108.03540, (2021).Google Scholar