Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-26T23:27:05.012Z Has data issue: false hasContentIssue false

Effective resolution of cusps on Hilbert modular varieties

Published online by Cambridge University Press:  24 October 2008

G. K. Sankaran
Affiliation:
Department of Pure Mathematics, University of Cambridge

Extract

In this paper, we use the Shintani decomposition, known to number theorists, to describe an effective method of finding a resolution of the cusps of a Hilbert modular variety, in any dimension.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Danilov, V. I.. The geometry of toric varieties. Russian Math. Surveys 33 (1978), 97154.CrossRefGoogle Scholar
[2]Ehlers, F.. Eine Klasse komplexer Mannigfaltigkeiten und die Auflösung einiger isolierter Singularitäten. Math. Ann. 218 (1975), 127156.Google Scholar
[3]Hirzebruch, F. and van der Geer, G.. Lectures on Hilbert Modular Surfaces (Les Presses del'université de Montréal, 1981).Google Scholar
[4]Shintani, T.. On evaluation of zeta functions of totally real algebraic number fields at non-positive integers. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 23 (1976), 393417.Google Scholar
[5]Shintani, T.. A remark on zeta functions of algebraic number fields. In Automorphic Forms, Representation Theory and Arithmetic: Papers Presented at the Bombay Colloquium 1979 (Springer-Verlag, 1981), 255260.Google Scholar
[6]Thomas, E. and Vasquez, A.. On the resolution of cusp singularities and the Shintani decomposition in totally real cubic number fields. Math. Ann. 247 (1980), 120.CrossRefGoogle Scholar
[7]Tsuchihashi, H.. Higher-dimensional analogues of periodic continued fractions and cusp singularities. Tohoku Math. J. (2) 35 (1983), 607639.CrossRefGoogle Scholar