Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-10T22:18:48.402Z Has data issue: false hasContentIssue false

The dimension of the feasible region of pattern densities

Published online by Cambridge University Press:  09 January 2025

FREDERIK GARBE
Affiliation:
Institute of Computer Science, Heidelberg University, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany. e-mail: garbe@informatik.uni-heidelberg.de
DANIEL KRÁL’
Affiliation:
Faculty of Informatics, Masaryk University, Botanická 68A, 602 00 Brno, Czech Republic. e-mail: dkral@fi.muni.cz
ALEXANDRU MALEKSHAHIAN
Affiliation:
Department of Mathematics, King’s College London, Strand, London, WC2R 2LS, UK. e-mail: alexandru.malekshahian@kcl.ac.uk
RAUL PENAGUIAO
Affiliation:
Max Planck Institute for the Sciences, Inselstraße 22, 04103 Leipzig, Germany. e-mail: raul.penaguiao@mis.mpg.de

Abstract

A classical result of Erdős, Lovász and Spencer from the late 1970s asserts that the dimension of the feasible region of densities of graphs with at most k vertices in large graphs is equal to the number of non-trivial connected graphs with at most k vertices. Indecomposable permutations play the role of connected graphs in the realm of permutations, and Glebov et al. showed that pattern densities of indecomposable permutations are independent, i.e., the dimension of the feasible region of densities of permutation patterns of size at most k is at least the number of non-trivial indecomposable permutations of size at most k. However, this lower bound is not tight already for $k=3$. We prove that the dimension of the feasible region of densities of permutation patterns of size at most k is equal to the number of non-trivial Lyndon permutations of size at most k. The proof exploits an interplay between algebra and combinatorics inherent to the study of Lyndon words.

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Cambridge Philosophical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

An extended abstract announcing the results presented in this paper has been published in the Proceedings of Eurocomb’23.

Previous affiliation: Faculty of Informatics, Masaryk University, Botanická 68A, 602 00 Brno, Czech Republic. Supported by the MUNI Award in Science and Humanities (MUNI/I/1677/2018) of the Grant Agency of Masaryk University.

§

Supported by the MUNI Award in Science and Humanities (MUNI/I/1677/2018) of the Grant Agency of Masaryk University.

References

Baber, R. and Talbot, J.. Hypergraphs do jump. Combin. Probab. Comput. 20 (2011), 161171.CrossRefGoogle Scholar
Baber, R. and Talbot, J.. A solution to the 2/3 conjecture. SIAM J. Discrete Math. 28 (2014), 756766.CrossRefGoogle Scholar
Balogh, J., Clemen, F. C. and Lidicky, B.. Solving Turán’s tetrahedron problem for the ℓ2-norm. J. London Math. Soc. 106 (2022), 6084.CrossRefGoogle Scholar
Balogh, J., Hu, P., Lidický, B. and Liu, H.. Upper bounds on the size of 4-and 6-cycle-free subgraphs of the hypercube. Eur. J. Combin. 35 (2014), 7585.CrossRefGoogle Scholar
Balogh, J., Hu, P., Lidický, B., Pikhurko, O., Udvari, B. and Volec, J.. Minimum number of monotone subsequences of length 4 in permutations. Combin. Probab. Comput. 24 (2015), 658679.CrossRefGoogle Scholar
Borga, J. and Penaguiao, R.. The feasible region for consecutive patterns of permutations is a cycle polytope. Algebr. Comb. 3 (2020), 12591281.Google Scholar
Borga, J. and Penaguiao, R.. The feasible regions for consecutive patterns of pattern-avoiding permutations. Discrete Math. 346 (2023), 113219.CrossRefGoogle Scholar
Borgs, C., Chayes, J., Lovász, L., Sós, V. T., Szegedy, B. and Vesztergombi, K.. Graph limits and parameter testing. In Proc. 38th Annual ACM Symposium on Theory of Computing (STOC) 2006, pp. 261270. ACM.CrossRefGoogle Scholar
Borgs, C., Chayes, J. T., Lovász, L., Sós, V. T. and Vesztergombi, K.. Convergent sequences of dense graphs I: Subgraph frequencies, metric properties and testing. Adv. Math. 219 (2008), 18011851.CrossRefGoogle Scholar
Borgs, C., Chayes, J. T., Lovász, L., Sós, V. T. and Vesztergombi, K.. Convergent sequences of dense graphs II. Multiway cuts and statistical physics. Ann. of Math. (2) (2012), 151–219.CrossRefGoogle Scholar
Chan, T., Král’, D., Noel, J. A., Pehova, Y., Sharifzadeh, M. and Volec, J.. Characterisation of quasirandom permutations by a pattern sum. Random Structures Algorithm 57 (2020), 920939.CrossRefGoogle Scholar
Chen, K. T., Fox, R. H. and Lyndon, R. C.. Free differential calculus, IV. The quotient groups of the lower central series. Ann. Math. 68 (1958), 8195.CrossRefGoogle Scholar
Coregliano, L. N. and Razborov, A. A.. On the density of transitive tournaments. J. Graph Theory 85 (2017), 1221.CrossRefGoogle Scholar
Crudele, G., Dukes, P. and Noel, J. A.. Six permutation patterns force quasirandomness. Preprint ArXiv:2303.04776 (2023).Google Scholar
Diaconis, P. and Janson, S.. Graph limits and exchangeable random graphs. Rend. Mat. Appl. 28 (2008), 3361.Google Scholar
Erdős, P., Lovász, L. and Spencer, J.. Strong independence of graphcopy functions. In Graph Theory and Related Topics (Academic Press, 1979), pp. 165–172.Google Scholar
Garbe, F., Hladký, J., Kun, G. and Pekárková, K.. On pattern-avoiding permutons. Random Structures Algorithm 65 (2024), 4660.CrossRefGoogle Scholar
Glebov, R., Grzesik, A., Klimošová, T. and Král’, D.. Finitely forcible graphons and permutons. J. Combin. Theory Ser. B 110 (2015), 112135.CrossRefGoogle Scholar
Glebov, R., Hoppen, C., Klimošová, T., Kohayakawa, Y., Král’, D. and Liu, H.. Densities in large permutations and parameter testing. European J. Combin. 60 (2017), 8999.CrossRefGoogle Scholar
Glebov, R., Král’, D. and Volec, J.. A problem of Erdős and Sós on 3-graphs. Israel J. Math. 211 (2016), 349366.CrossRefGoogle Scholar
Grzesik, A.. On the maximum number of five-cycles in a triangle-free graph. J. Combin. Theory Ser. B 102 (2012), 10611066.CrossRefGoogle Scholar
Grzesik, A., Hu, P. and Volec, J.. Minimum number of edges that occur in odd cycles. J. Combin. Theory Ser. B 137 (2019), 65103.CrossRefGoogle Scholar
Hatami, H., Hladký, J., Král’, D., Norine, S. and Razborov, A.. Non-three-colourable common graphs exist. Combin. Probab. Comput. 21 (2012), 734742.CrossRefGoogle Scholar
Hatami, H., Hladký, J., Král’, D., Norine, S. and Razborov, A.. On the number of pentagons in triangle-free graphs. J. Combin. Theory Ser. A 120 (2013), 722732.CrossRefGoogle Scholar
Hladký, J., Král’, D. and Norin, S.. Counting flags in triangle-free digraphs. Combinatorica 37 (2017), 4976.CrossRefGoogle Scholar
Hoppen, C., Kohayakawa, Y., de, A., Moreira, C. G. T., Ráth, B. and Sampaio, R. M.. Limits of permutation sequences. J. Combin. Theory Ser. B 103 (2013), 93–113.CrossRefGoogle Scholar
Hoppen, C., Kohayakawa, Y., de, A., Moreira, C. G. T. and Sampaio, R. M.. Testing permutation properties through subpermutations. Theor. Comput. Sci. 412 (2011), 35553567.CrossRefGoogle Scholar
Kenyon, R., Král’, D., Radin, C. and Winkler, P.. Permutations with fixed pattern densities. Random Structures Algorithm 56 (2020), 220250.CrossRefGoogle Scholar
Král’, D., Lamaison, A., Prorok, M. and Shu, X.. The dimension of the region of feasible tournament profiles. Preprint ArXiv:2310.19482 (2023).Google Scholar
Král’, D., Liu, C.-H., Sereni, J.-S., Whalen, P. and Yilma, Z. B.. A new bound for the 2/3 conjecture. Combin. Probab. Comput. 22 (2013), 384393.CrossRefGoogle Scholar
Král’, D., Mach, L. and Sereni, J.-S.. A new lower bound based on Gromov’s method of selecting heavily covered points. Discrete Comput. Geom. 48 (2012), 487498.CrossRefGoogle Scholar
Král’, D. and Pikhurko, O.. Quasirandom permutations are characterised by 4-point densities. Geom. Funct. Anal. 23 (2013), 570579.CrossRefGoogle Scholar
Kurečka, M.. Lower bound on the size of a quasirandom forcing set of permutations. Combin. Probab. Comput. 31 (2022), 304–319.Google Scholar
Lovász, L.. Large Networks and Graph Limits. Colloquium Publications, vol. 60 (American Mathematical Society, 2012).CrossRefGoogle Scholar
Lovász, L. and Szegedy, B.. Limits of dense graph sequences. J. Combin. Theory Ser. B 96 (2006), 933957.CrossRefGoogle Scholar
Lovász, L. and Szegedy, B.. Testing properties of graphs and functions. Israel J. Math. 178 (2010), 113156.CrossRefGoogle Scholar
Lyndon, R. C.. On Burnside’s problem. Trans. Amer. Math. Soc. 77 (1954), 202215.Google Scholar
Penaguiao, R.. Pattern hopf algebras. Ann. Comb. 26 (2022), 405451.CrossRefGoogle ScholarPubMed
Pikhurko, O. and Razborov, A.. Asymptotic structure of graphs with the minimum number of triangles. Combin. Probab. Comput. 26 (2017), 138160.CrossRefGoogle Scholar
Pikhurko, O., Sliacčan, J. and Tyros, K.. Strong forms of stability from flag algebra calculations. J. Combin. Theory Ser. B 135 (2019), 129–178.Google Scholar
Pikhurko, O. and Vaughan, E. R.. Minimum number of k-cliques in graphs with bounded independence number. Combin. Probab. Comput. 22 (2013), 910934.CrossRefGoogle Scholar
Radford, D. A.. A natural ring basis for the shuffle algebra and an application to group schemes. J. Algebra 58 (1979), 432454.CrossRefGoogle Scholar
Razborov, A. A.. Flag algebras. J. Symbolic Logic 72 (2007), 12391282.CrossRefGoogle Scholar
Razborov, A. A.. On the minimal density of triangles in graphs. Combin. Probab. Comput. 17 (2008), 603618.CrossRefGoogle Scholar
Razborov, A. A.. On 3-hypergraphs with forbidden 4-vertex configurations. SIAM J. Discrete Math. 24 (2010), 946–963.Google Scholar
Širšov, A. I.. Subalgebras of free Lie algebras. Mat. Sbornik N.S. 33/75 (1953), 441–452.Google Scholar
Sliacčan, J. and Stromquist, W.. Improving bounds on packing densities of 4-point permutations. Discrete Math. Theor. Comput. Sci 19 (2018).Google Scholar
Vargas, Y.. Hopf algebra of permutation pattern functions. In DMTCS Proceedings vol. AT, 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014) 2014, pp. 839–850.CrossRefGoogle Scholar
Whitney, H.. The coloring of graphs. Ann. Math. 33 (1932), 688718.CrossRefGoogle Scholar