Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-28T23:25:59.722Z Has data issue: false hasContentIssue false

Classes of unipotent elements in simple algebraic groups. I

Published online by Cambridge University Press:  24 October 2008

P. Bala
Affiliation:
Mathematics Institue, University of Warwick, Coventry
R. W. Carter
Affiliation:
Mathematics Institue, University of Warwick, Coventry

Extract

Let G be a simple adjoint algebraic group over an algebraically closed field K. We are concerned to describe the conjugacy classes of unipotent elements of G. G operates on its Lie algebra g by means of the adjoint action and we may consider classes of nilpotent elements of g under this action. It has been shown by Springer (11) that there is a bijection between the unipotent elements of G and the nilpotent elements of g which preserves the G-action, provided that the characteristic of K is either 0 or a ‘good prime’ for G. Thus we may concentrate on the problem of classifying the nilpotent elements of g under the adjoint G-action.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1976

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Borel, A.Linear algebraic groups. (New York: Benjamin, 1969.)Google Scholar
(2)Borel, A., Carter, R., Curtis, C. W., Iwahori, N., Springer, T. A. and Steinberg, R.Seminar on algebraic groups and related finite groups. Lecture Notes in Mathematics 131 (Springer, 1970).CrossRefGoogle Scholar
(3)Borel, A. and De Siebenthal, J.Les sous-groupes fermés de rang maximum des groupes de Lie clos. Comment. Math. Helv, 23 (1949), 200221.CrossRefGoogle Scholar
(4)Carter, R. W. and Elkington, G. B.A note on the parametrisation of conjugacy classes. J. Algebra 20 (1972), 350354.CrossRefGoogle Scholar
(5)Dynkin, E. B.Semisimple subalgebras of semisimple Lie algebra Amer. Math. Soc. Transl. (2) 6 (1957), 111244.Google Scholar
(6)Elkington, G. B.Centralizers of unipotent elements in semisimple algebraic groups. J. Algebra 23 (1972), 137163.CrossRefGoogle Scholar
(7)Jacobson, N.Lie algebras. (New York: Interscience Publishers, 1962).Google Scholar
(8)Richardson, R. W.Conjugacy classes in Lie algebras and algebraic groups. Ann. Math. 86 (1967), 115.CrossRefGoogle Scholar
(9)Richardson, R. W.Conjugacy classes in parabolic subgroups of semisimple algebraic groups. Bull. London Math. Soc. 6 (1974), 2124.CrossRefGoogle Scholar
(10)Rosenlicht, M.On quotient varieties and the affine embedding of certain homogeneous spaces. Trans. Amer. Math. Soc. 101 (1961), 211223.CrossRefGoogle Scholar
(11)Springer, T. A. The unipotent variety of a semisimple group. Proceedings of the Colloquium in Algebraic Geometry (Tata Institute, 1969), 373391.Google Scholar
(12)Steinberg, R.Automorphisms of classical Lie algebras. Pacific J. Math. 11 (1961), 11191129.CrossRefGoogle Scholar
(13)Wall, G. E.On the conjugacy classes in the unitary, symplectic and orthogonal groups. J. Australian Math. Soc. 3 (1963), 162.CrossRefGoogle Scholar