Hostname: page-component-5b777bbd6c-v47t2 Total loading time: 0 Render date: 2025-06-26T05:57:02.539Z Has data issue: false hasContentIssue false

A certain triple Whitehead product

Published online by Cambridge University Press:  24 October 2008

P. J. Hilton
Affiliation:
Pembroke College Cambridge

Extract

The triple Whitehead product we consider in this note is [[ɩn, ɩn], ɩn] ∈ π3n−2(Sn), where ɩn generates πn(Sn). It follows from the Jacobi identity for Whitehead products

α ∈ πp(X), β ∈ πq(X), γ ∈ πr(X), that 3[[ɩn, ɩn], ɩn] = 0. Now, if n is odd, 2[ɩn, ɩn] = 0, so that 2[[ɩn, ɩn], ɩn] = 0, whence

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1954

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

REFERENCES

(1) Barratt, M. G. and Hilton, P. J. On join operations in homotopy groups. Proc. Lond. math. Soc. (3), 1 (1953), 430–45.Google Scholar
(2) Borel, A. and Serre, J.-P. Groupes de Lie et puissances réduites de Steenrod, Amer. J. Math. 75 (1953), 409–48.Google Scholar
(3) Chang, S. C. Some suspension theorems. Quart. J. Math. (2), 1 (1950), 310–17.Google Scholar
(4) Chang, S. C. On πr(Sp V Sq). (In the Press.)Google Scholar
(5) Hilton, P. J. Suspension theorems and the generalized Hopf invariant. Proc. Lond. math. Soc. (3), 1 (1951), 462–93.Google Scholar
(6) Hilton, P. J. The Hopf invariant and homotopy groups of spheres. Proc. Camb. phil. Soc. 48 (1952), 547–54.Google Scholar
(7) Hilton, P. J. On the Hopf invariant of a composition element. J. Lond. math. Soc. (In the Press.)Google Scholar
(8) Hilton, P. J. and Whitehead, J. H. C. Note on the Whitehead product. Ann. Math., Princeton, 58 (1953), 429–42.Google Scholar
(9) Serre, J.-P. Homologie singulière des espaces fibrés. Ann. Math., Princeton, 54 (1951), 425505.Google Scholar
(10) Serre, J.-P. Sur la suspension de Freudenthal. C.R. Acad. Sci., Paris, 234 (1952), 1340–2.Google Scholar
(11) Serre, J.-P. Groupes d'homotopie et classes de groupes Abéliens. Ann. Math., Princeton, 58 (1953), 258–94.Google Scholar
(12) Steenrod, N. E. Cohomology invariants of mappings. Ann. Math., Princeton, 50 (1949), 954–88.Google Scholar
(13) Whitehead, G. W. On the Freudenthal theorems. Ann. Math., Princeton, 57 (1953), 209–28.Google Scholar