Hostname: page-component-5b777bbd6c-f9nfp Total loading time: 0 Render date: 2025-06-18T17:51:29.856Z Has data issue: false hasContentIssue false

Restricted projections to lines in $\mathbb{R}^{n+1}$

Published online by Cambridge University Press:  15 May 2025

JIAYIN LIU*
Affiliation:
Mathematics Area, SISSA, via Bonomea, 265 - 34136 Trieste, Italy. e-mail: jliu@sissa.it

Abstract

We prove the following restricted projection theorem. Let $n\ge 3$ and $\Sigma \subset S^{n}$ be an $(n-1)$-dimensional $C^2$ manifold such that $\Sigma$ has sectional curvature $\gt1$. Let $Z \subset \mathbb{R}^{n+1}$ be analytic and let $0 \lt s \lt \min\{\dim Z, 1\}$. Then

\begin{equation*} \dim \{z \in \Sigma\; :\; \dim (Z \cdot z) \lt s\} \le (n-2)+s = (n-1) + (s-1) \lt n-1.\end{equation*}
In particular, for almost every $z \in \Sigma$, $\dim (Z \cdot z) = \min\{\dim Z, 1\}$.

The core idea, originated from Käenmäki–Orponen–Venieri, is to transfer the restricted projection problem to the study of the dimension lower bound of Furstenberg sets of cinematic family contained in $C^2([0,1]^{n-1})$. This cinematic family of functions with multivariables are extensions of those of one variable by Pramanik–Yang–Zahl and Sogge. Since the Furstenberg sets of cinematic family contain the affine Furstenberg sets as a special case, the dimension lower bound of Furstenberg sets improves the one by Héra, Héra–Keleti–Máthé and Dąbrowski–Orponen–Villa.

Moreover, our method to show the restricted projection theorem can also give a new proof for the Mattila projection theorem in $\mathbb{R}^n$ with $n \ge 3$.

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Cambridge Philosophical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Córdoba, A. M.-C.. The Kakeya maximal function and the spherical summation multipliers. Amer. J. Math. 99, 1977, 122.CrossRefGoogle Scholar
Dąbrowski, D., Orponen, T. and Villa, M.. Integrability of orthogonal projections, and applications to Furstenberg sets. Adv. Math. 407 (108567) (2022), 34.Google Scholar
Fässler, K. and Orponen, T.. On restricted families of projections in $\mathbb{R}^3$ . Proc. London Math. Soc. (3), 109 (2) (2014), 353381.Google Scholar
Fässler, K., Liu, J. and Orponen, T.. On the hausdorff dimension of circular furstenberg sets. Discrete Analysis, December 2024, https://discreteanalysisjournal.com/article/127578-on-the-hausdorff-dimension-of-circular-furstenberg-sets.Google Scholar
Gan, S., Guo, S. and Wang, H.. A restricted projection problem for fractal sets in $\mathbb{R}^n$ . Cambridge Journal of Mathematics, to appear, 2025+.Google Scholar
He, W.. Orthogonal projections of discretised sets. J. Fractal Geom. 7 (3) (2020), 271317.CrossRefGoogle Scholar
Héra, K.. Hausdorff dimension of Furstenberg-type sets associated to families of affine subspaces. Ann. Acad. Sci. Fenn. Math. 44(2) 2019), 903923.CrossRefGoogle Scholar
Héra, K., Keleti, T. and Máthé, A.. Hausdorff dimension of unions of affine subspaces and of Furstenberg-type sets. J. Fractal Geom. 6(3) (2019), 263284.CrossRefGoogle Scholar
Héra, K., Shmerkin, P. and Yavicoli, A.. An improved bound for the dimension of $(\alpha,2\alpha)$ -Furstenberg sets. Rev. Mat. Iberoamericana 38(1) (2022), 295322.CrossRefGoogle Scholar
Hug, D. and Weil, W.. Lectures on convex geometry. Graduate Texts in Math. vol 286 (Springer Cham, 2020).CrossRefGoogle Scholar
Kaufman, R.. On Hausdorff dimension of projections. Mathematika 15 (1968) 153155.CrossRefGoogle Scholar
Kolasa, L. and Wolff, T... On some variants of the Kakeya problem. Pacific J. Math. 190(1) (1999), 111154.CrossRefGoogle Scholar
Käenmäki, A., Orponen, T. and Venieri, L.. A marstrand-type restricted projection theorem in $\mathbb{R}^{3}$ . Amer. J. Math. 147(1) (2025), 81123.CrossRefGoogle Scholar
Liu, J.. Dimension estimates on circular (s,t)-Furstenberg sets. Annales Fennici Mathematici, 48(1) (2023), 299324.CrossRefGoogle Scholar
Marstrand, J. M.. Some fundamental geometrical properties of plane sets of fractional dimensions. Proc. London Math. Soc. (3), 4 (1954), 257302.Google Scholar
Mattila, P.. Hausdorff dimension, orthogonal projections and intersections with planes. Ann. Acad. Sci. Fenn. Ser. A I Math. 1(2) (1975), 227244.CrossRefGoogle Scholar
Ohm, K. W.. Projection theorems and isometries of hyperbolic spaces. Preprint: ArXiv:2305·12302 (2023).Google Scholar
Orponen, T. and Shmerkin, P.. On the hausdorff dimension of furstenberg sets and orthogonal projections in the plane. Duke Math. J. 172(18) (2023), 35593632.CrossRefGoogle Scholar
Pramanik, M., Yang, T. and Zahl, J.. A Furstenberg-type problem for circles, and a Kaufman-type restricted projection theorem in $\mathbb{R}^3$ . Amer. J. Math. to appear, 2025+.Google Scholar
Sogge, C.D.. Propagation of singularities and maximal functions in the plane. Invent. Math. 104(2) (1991), 349376.CrossRefGoogle Scholar
Walter, W.. Ordinary differential equations. Graduate Texts in Math. vol. 182 (Springer-Verlag, New York, 1998). Translated from the sixth German (1996) edition by Russell Thompson, Readings in Mathematics.Google Scholar
Zahl, J.. On maximal functions associated to families of curves in the plane. Preprint: ArXiv:2307·05894 (2023).Google Scholar