No CrossRef data available.
Published online by Cambridge University Press: 07 August 2025
In this short paper, we prove that the restriction conjecture for the (hyperbolic) paraboloid in  $\mathbb{R}^{d}$ implies the
$\mathbb{R}^{d}$ implies the  $l^p$-decoupling theorem for the (hyperbolic) paraboloid in
$l^p$-decoupling theorem for the (hyperbolic) paraboloid in  $\mathbb{R}^{2d-1}$. In particular, this gives a simple proof of the
$\mathbb{R}^{2d-1}$. In particular, this gives a simple proof of the  $l^p$ decoupling theorem for the (hyperbolic) paraboloid in
$l^p$ decoupling theorem for the (hyperbolic) paraboloid in  $\mathbb{R}^3$.
$\mathbb{R}^3$.
 $l^2$
 decoupling conjecture. Ann. of Math. (2) 182(1) (2015), 351–389.CrossRefGoogle Scholar
$l^2$
 decoupling conjecture. Ann. of Math. (2) 182(1) (2015), 351–389.CrossRefGoogle Scholar $\mathbb{R}^n$
, 2024.CrossRefGoogle Scholar
$\mathbb{R}^n$
, 2024.CrossRefGoogle Scholar $L^p$
 estimates for oscillatory integral operators of arbitrary signature. Math. Z. 301(1) 2022, 1143–1189.CrossRefGoogle Scholar
$L^p$
 estimates for oscillatory integral operators of arbitrary signature. Math. Z. 301(1) 2022, 1143–1189.CrossRefGoogle Scholar $L^p$
 for large p. Geom. Funct. Anal. 10(5) (2000), 1237–1288.Google Scholar
$L^p$
 for large p. Geom. Funct. Anal. 10(5) (2000), 1237–1288.Google Scholar