No CrossRef data available.
 $\tau $-component in the Iwasawa main conjecture
$\tau $-component in the Iwasawa main conjecturePublished online by Cambridge University Press: 29 May 2025
Let p be an odd prime, and suppose that  $E_1$ and
$E_1$ and  $E_2$ are two elliptic curves which are congruent modulo p. Fix an Artin representation
$E_2$ are two elliptic curves which are congruent modulo p. Fix an Artin representation  $\tau\,{:}\,G_{F}\rightarrow \mathrm{GL}_2(\mathbb{C})$ over a totally real field F, induced from a Hecke character over a CM-extension
$\tau\,{:}\,G_{F}\rightarrow \mathrm{GL}_2(\mathbb{C})$ over a totally real field F, induced from a Hecke character over a CM-extension  $K/F$. Assuming
$K/F$. Assuming  $E_1$ and
$E_1$ and  $E_2$ are ordinary at p, we compute the variation in the
$E_2$ are ordinary at p, we compute the variation in the  $\mu$- and
$\mu$- and  $\lambda$-invariants for the
$\lambda$-invariants for the  $\tau$-part of the Iwasawa Main Conjecture, as one switches from
$\tau$-part of the Iwasawa Main Conjecture, as one switches from  $E_1$ to
$E_1$ to  $E_2$. Provided an Euler system exists, it will follow directly that IMC
$E_2$. Provided an Euler system exists, it will follow directly that IMC $(E_1,\tau)$ is true if and only if IMC
$(E_1,\tau)$ is true if and only if IMC $(E_2,\tau)$ is true.
$(E_2,\tau)$ is true.
 $\lambda$
-invariant over a solvable extension, Proc. London Math. Soc. 120 (2020), 918–960.CrossRefGoogle Scholar
$\lambda$
-invariant over a solvable extension, Proc. London Math. Soc. 120 (2020), 918–960.CrossRefGoogle Scholar $\lambda$
-invariant over a solvable extension, Math. Proc. Camb. Phil. Soc, 170 (2021), 499–521.10.1017/S0305004119000495CrossRefGoogle Scholar
$\lambda$
-invariant over a solvable extension, Math. Proc. Camb. Phil. Soc, 170 (2021), 499–521.10.1017/S0305004119000495CrossRefGoogle Scholar $\mu$
-invariant and
$\mu$
-invariant and 
 $\lambda$
-invariant associated to tensor products of newforms, Ann. Inst. Fourier 74 (2024), 451–502.CrossRefGoogle Scholar
$\lambda$
-invariant associated to tensor products of newforms, Ann. Inst. Fourier 74 (2024), 451–502.CrossRefGoogle Scholar $\times$
GL(2) over totally real fields, Ann. Inst. Fourier 41 (1991), 311–391.10.5802/aif.1258CrossRefGoogle Scholar
$\times$
GL(2) over totally real fields, Ann. Inst. Fourier 41 (1991), 311–391.10.5802/aif.1258CrossRefGoogle Scholar $\mathrm{GL}(2)$
 and
$\mathrm{GL}(2)$
 and 
 $\mathrm{GL}(2)\times \mathrm{GL}(2)$
. D. Math. J. 74 (1994), 431–529.Google Scholar
$\mathrm{GL}(2)\times \mathrm{GL}(2)$
. D. Math. J. 74 (1994), 431–529.Google Scholar $p$
-adic
$p$
-adic 
 $L$
-function for the
$L$
-function for the 
 $\chi$
-twisted symmetric square representation associated to an ordinary modular form. PhD. thesis. University of British Columbia (2025).Google Scholar
$\chi$
-twisted symmetric square representation associated to an ordinary modular form. PhD. thesis. University of British Columbia (2025).Google Scholar