Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-25T20:39:41.320Z Has data issue: false hasContentIssue false

Preface

Published online by Cambridge University Press:  03 October 2014

A. Sequeira
Affiliation:
Departamento de Matemática and CEMAT/IST Instituto Superior Técnico Universidade de Lisboa Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
V. Volpert
Affiliation:
Institut Camille Jordan, UMR 5208 CNRS, University Lyon 1, 69622 Villeurbanne, France
Get access

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Research Article
Copyright
© EDP Sciences, 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Panteleev, M.A., Sveshnikova, A.N., Belyaev, A.V., Nechipurenko, D.Y., Gudich, I., Obydenny, S.I., Dovlatova, N., Fox, S.C., Holmuhamedov, E.L.. Systems biology and systems pharmacology of thrombosis. Math. Model. Nat. Phenom., 9 (2014), no. 6, 416. CrossRefGoogle Scholar
Naidu, P.P., Anand, M.. Importance of VIIIa inactivation in a mathematical model for the formation, growth, and lysis of clots. Math. Model. Nat. Phenom., 9 (2014), no. 6, 1733. CrossRefGoogle Scholar
Sequeira, A., Bodnar, T.. Blood coagulation simulations using a viscoelastic model. Math. Model. Nat. Phenom., 9 (2014), no. 6, 3445. CrossRefGoogle Scholar
Boujena, S., Kafi, O., El Khatib, N.. A 2D mathematical model of blood flow and its interactions in an atherosclerotic artery. Math. Model. Nat. Phenom., 9 (2014), no. 6, 4668. CrossRefGoogle Scholar
Bessonov, N., Babushkina, E., Golovashchenko, S.F., Tosenberger, A., Ataullakhanov, F., Panteleev, M., Tokarev, A., Volpert, V.. Numerical modelling of cell distribution in blood flow. Math. Model. Nat. Phenom., 9 (2014), no. 6, 6984. CrossRefGoogle Scholar
Gamilov, T., Ivanov, Yu., Kopylov, P., Simakov, S., Vassilevski, Yu.. Patient specific haemodynamic modeling after occlusion treatment in leg. Math. Model. Nat. Phenom., 9 (2014), no. 6, 8597. CrossRefGoogle Scholar
Tiago, J., Gambaruto, A., Sequeira, A.. Patient-specific blood flow simulations: setting Dirichlet boundary conditions for minimal error with respect to measured data. Math. Model. Nat. Phenom., 9 (2014), no. 6, 98116. CrossRefGoogle Scholar
Bodnár, T., Pires, M., Janela, J.. Blood flow simulation using traceless variant of Johnson-Segalman viscoelastic model. Math. Model. Nat. Phenom., 9 (2014), no. 6, 117141. CrossRefGoogle Scholar