Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-11T07:43:16.975Z Has data issue: false hasContentIssue false

A Posteriori Error Estimates for Finite Volume Approximations

Published online by Cambridge University Press:  27 January 2009

S. Cochez-Dhondt
Affiliation:
Université de Valenciennes et du Hainaut Cambrésis, LAMAV, FR CNRS 2956, ISTV, F59313 - Valenciennes Cedex 9, France
S. Nicaise*
Affiliation:
Université de Valenciennes et du Hainaut Cambrésis, LAMAV, FR CNRS 2956, ISTV, F59313 - Valenciennes Cedex 9, France
S. Repin
Affiliation:
Steklov Institute of Mathematics in St. Petersburg, Fontanka 27, 191023, St. Petersburg, Russia
Get access

Abstract

We present new a posteriori error estimates for the finite volume approximationsof elliptic problems. They are obtained by applying functional a posteriorierror estimates to natural extensions of the approximate solution and its fluxcomputed by the finite volume method. The estimates give guaranteed upper boundsfor the errors in terms of the primal (energy) norm, dual norm (for fluxes), andalso in terms of the combined primal-dual norms. It is shown that the estimatesprovide sharp upper and lower bounds of the error and their practicalcomputation requires solving only finite-dimensional problems.

Type
Research Article
Copyright
© EDP Sciences, 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

A. Agouzal, F. Oudin. A posteriori error estimator for finite volume methods. C. R. Acad. Sci. Paris, Sér. 1, 343 (2006), 349–354.
S. Repin, S. Sauter, A. Smolianski. Two-Sided a posteriori error estimates for mixed formulations of elliptic problems. Preprint 21-2005, Institute of Mathematics, University of Zurich (to appear in SIAM J. Numer. Anal.).
R. Verfürth. A review of a posteriori error estimation and adaptive mesh–refinement techniques. Wiley, Teubner, New York, 1996.
Vohralík, M.. A posteriori error estimates for finite volume and mixed finite element discretizations of convection-diffusion-reaction equations. ESAIM: Proc., 18 (2007), 5769. CrossRef