Published online by Cambridge University Press: 26 March 2009
A nonlinear system of two delay differential equations is proposed to modelhematopoietic stem cell dynamics. Each equation describes the evolution of asub-population, either proliferating or nonproliferating. The nonlinearityaccounting for introduction of nonproliferating cells in the proliferating phaseis assumed to depend upon the total number of cells. Existence and stabilityof steady states are investigated. A Lyapunov functional is built to obtain theglobal asymptotic stability of the trivial steady state. The study ofeigenvalues of a second degree exponential polynomial characteristic equationallows to conclude to the existence of stability switches for the uniquepositive steady state. A numerical analysis of the role of each parameter on theappearance of stability switches completes this analysis.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.