Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-27T00:05:00.603Z Has data issue: false hasContentIssue false

Block Factorization of Hankel Matrices and EuclideanAlgorithm

Published online by Cambridge University Press:  26 August 2010

S. Belhaj*
Affiliation:
Laboratoire de Mathématiques, CNRS UMR 6623, Université de Franche-Comté 25030 Besançon cedex, France Laboratoire LAMSIN, Ecole Nationale d’Ingénieurs de Tunis BP 37, 1002 Tunis Belvédère, Tunisie
*
*Corresponding author: E-mail:skander.belhaj@univ-fcomte.fr
Get access

Abstract

It is shown that a real Hankel matrix admits an approximate block diagonalization inwhich the successive transformation matrices are upper triangular Toeplitz matrices. Thestructure of this factorization was first fully discussed in [1]. This approach isextended to obtain the quotients and the remainders appearing in the Euclidean algorithmapplied to two polynomials u(x) andv(x) of degree n andm, respectively, whith m <n

Type
Research Article
Copyright
© EDP Sciences, 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Belhaj, S.. A fast method to block-diagonalize a Hankel matrix . Numer Algor, 47 (2008), 15-34.CrossRefGoogle Scholar
S. Belhaj. Block diagonalization of Hankel and Bézout matrices : connection with the Euclidean algorithm, submitted.
Ben Atti, N., Diaz-Toca, G.M.. Block diagonalization and LU-equivalence of Hankel matrices . Linear Algebra and its Applications, 412 (2006), 247-269.CrossRefGoogle Scholar
D. Bini, L. Gemignani. On the Euclidean scheme for polynomials having interlaced real zeros. Proc. 2nd ann. ACM symp. on parallel algorithms and architectures, Crete, (1990), 254-258.
Bini, D., Gemignani, L.. Fast parallel computation of the polynomial remainder sequence via Bézout and Hankel matrices . SIAM J. Comput., 24 (1995), 6377.CrossRefGoogle Scholar
Borodin, A., VonZurGathen, J., Hopcroft, J.. Fast parallel matrix and gcd computation . Information and Control, 52 (1982), 241-256.CrossRefGoogle Scholar
Diaz-Toca, G., Ben Atti, N.. Block LU factorization of Hankel and Bezout matrices and Euclidean algorithm . Int. J. Comput. Math., 86 (2009), 135-149.CrossRefGoogle Scholar
Gragg, W. B., Lindquist, A.. On partial realization problem . Linear Algebra Appl., 50 (1983), 277-319.CrossRefGoogle Scholar
G. Heining, K. Rost. Algebraic methods for Toeplitz-like matrices and operators. Birkhäuser Verlag, Basel, 1984.