Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-11T02:06:07.513Z Has data issue: false hasContentIssue false

A simple proof of Stirling's formula for the gamma function

Published online by Cambridge University Press:  13 March 2015

G. J. O. Jameson*
Affiliation:
Dept. of Mathematics and Statistics, Lancaster University, Lancaster LA1 4YF, e-mail: g.jameson@lancaster.ac.uk

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Articles
Copyright
Copyright © Mathematical Association 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Fowler, David, The factorial function: Stirling's formula, Math. Gaz. 84 (March 2000), pp. 4250.CrossRefGoogle Scholar
2. Artin, Emil, Einführung in die Theorie der G ammafunktion, Teubner, Leipzig (1931); English translation: The gamma function, Holt, Rinehart and Winston (1964).Google Scholar
3. Andrews, George E., Askey, Richard and Roy, Ranjam, Special functions, Cambridge University Press (1999).Google Scholar
4. Jameson, G. J. O., A fresh look at Euler's limit formula for the gamma function, Math. Gaz. 98 (July 2014) pp. 235242.Google Scholar
5. Jameson, G. J. O., Euler-Maclaurin, harmonic sums and Stirling's formula, Math. Gaz. 99 (March 2015) pp. 7589.Google Scholar
6. Feller, William, An introduction to probability theory and its applications, John Wiley (1950).Google Scholar
7. Patin, J. M., A very short proof of Stirling's formula, Amer. Math. Monthly 96 (1989) pp. 4142.Google Scholar
8. Michel, Reinhard, The (n + 1) th proof of Stirling's formula, Amer. Math. Monthly 115 (2008) pp. 844845.Google Scholar
9. Copson, E. T., Introduction to the theory of functions of a complex variable, Oxford University Press (1935).Google Scholar