Crossref Citations
This article has been cited by the following publications. This list is generated based on data provided by
Crossref.
Edelsbrunner, Herbert
Rote, Günter
and
Welzl, Emo
1987.
Automata, Languages and Programming.
Vol. 267,
Issue. ,
p.
364.
Edelsbrunner, Herbert
Rote, Günter
and
Welzl, Ermo
1989.
Testing the necklace condition for shortest tours and optimal factors in the plane.
Theoretical Computer Science,
Vol. 66,
Issue. 2,
p.
157.
Jaromczyk, J.W.
and
Toussaint, G.T.
1992.
Relative neighborhood graphs and their relatives.
Proceedings of the IEEE,
Vol. 80,
Issue. 9,
p.
1502.
Sullivan, John M.
1994.
Sphere packings give an explicit bound for the Besicovitch Covering Theorem.
Journal of Geometric Analysis,
Vol. 4,
Issue. 2,
p.
219.
Füredi, Zoltán
and
Loeb, Peter A.
1994.
On the best constant for the Besicovitch covering theorem.
Proceedings of the American Mathematical Society,
Vol. 121,
Issue. 4,
p.
1063.
Michael, T.S.
and
Quint, T.
1994.
Sphere of influence graphs: Edge density and clique size.
Mathematical and Computer Modelling,
Vol. 20,
Issue. 7,
p.
19.
1995.
Geometric Measure Theory.
p.
157.
Dwyer, Rex A.
1995.
The expected size of the sphere-of-influence graph.
Computational Geometry,
Vol. 5,
Issue. 3,
p.
155.
Loeb, Peter A.
2000.
Nonstandard Analysis for the Working Mathematician.
p.
73.
2000.
Geometric Measure Theory.
p.
203.
Harborth, H.
Koch, M.
and
Szabó, L.
2001.
NEWTON NUMBERS FOR OVERLAPPING CIRCULAR DISCS.
Studia Scientiarum Mathematicarum Hungarica,
Vol. 37,
Issue. 1-2,
p.
119.
Loeb, Peter A.
2015.
Nonstandard Analysis for the Working Mathematician.
p.
79.
Loeb, Peter A.
2016.
Real Analysis.
p.
45.
Loeb, Peter A.
2016.
Real Analysis.
p.
179.
Loeb, Peter A.
2016.
Real Analysis.
p.
147.
Loeb, Peter A.
2016.
Real Analysis.
p.
25.
Loeb, Peter A.
2016.
Real Analysis.
p.
1.
2016.
Geometric Measure Theory.
p.
235.
Loeb, Peter A.
2016.
Real Analysis.
p.
191.
Loeb, Peter A.
2016.
Real Analysis.
p.
127.