Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-11T06:15:57.108Z Has data issue: false hasContentIssue false

A Class of Configurations and the Commutativity of Multiplication

Published online by Cambridge University Press:  03 November 2016

Extract

A configuration is a finite collection of points, lines and planes with a number of each on each; any one of the three kinds may be empty.

Type
Research Article
Copyright
Copyright © Mathematical Association 1956

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Baker, H. F., Principles of Geometry, Vol. I, Cambridge (1925).Google Scholar
2. Coxeter, H. S. M., “Self-Dual Configurations and Regular Graphs”, Bull. Amer. Math. Soc., Vol. 56 (1950), pp. 413-455.CrossRefGoogle Scholar
3. Möbius, A. F., Kann Von Zwei dreiseitigen pyramiden eine jede in Bezug auf die andere um-und eingeschrieben zugleich heissen? Crelle 3 (1828).Google Scholar
4. Reidemeister, K., “Zur Axiomatik der 3-dimensionalen projektive Geometrie”, Jhbr. Deutsch. Math. Verein, 38 (1929), p. 71.Google Scholar
5. Schönhardt, , Jhbr. Deutsch. Math. Verein, 40 (1931), pp. 48-50.Google Scholar
6. Veblen, O. and Young, J W., Projective Geometry, Boston, New York, Vol. I (1910).Google Scholar