Hostname: page-component-7857688df4-jlx94 Total loading time: 0 Render date: 2025-11-13T07:57:41.834Z Has data issue: false hasContentIssue false

109.44 Unified proofs of Stirling’s formula and Burnside’s improvement

Published online by Cambridge University Press:  15 October 2025

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'

Information

Type
Notes
Copyright
© The Authors, 2025 Published by Cambridge University Press on behalf of The Mathematical Association

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Burnside, W., A rapidly convergent series for logN!, Messenger of Maths 46 (1917) pp. 157159.Google Scholar
Lindley, D. V., More on Stirling’s formula, Math. Gaz. 82 (November 1998) pp. 484485.10.2307/3619904CrossRefGoogle Scholar
Keiper, J. B., Stirling’s formula improved, Two-Year College Math. Journal 10 (January 1979) pp. 3839.10.2307/3026818CrossRefGoogle Scholar
Niculescu, C. P. and Popovici, F., A short proof of Burnside’s formula for the gamma function, Banach Journal of Math. Analysis, 9 (January 2015) pp. 196200.CrossRefGoogle Scholar
Needham, T., Visual complex analysis (25th anniversary edition), Oxford University Press (2023) pp. 434435.Google Scholar
Robbins, H., A remark on Stirling’s formula, American Math. Monthly, 62 (January 1955) pp. 2629.Google Scholar
Martici, C., A substantial improvement of the Stirling Formula, Applied Math. Letters (Elsevier) 24 (August 2011) pp. 13511354.10.1016/j.aml.2011.03.008CrossRefGoogle Scholar
Jameson, G. J. O., Euler-Maclaurin, harmonic sums and Stirling’s formula, Math. Gaz. 99 (March 2015) pp. 7589.CrossRefGoogle Scholar