Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-27T13:53:59.170Z Has data issue: false hasContentIssue false

88.42 Bounds for arithmetic mean of means

Published online by Cambridge University Press:  01 August 2016

Gian Mario Gianella*
Affiliation:
Dipartimanto di Matematica, Universita di Torino, Torino, Italy, gianella@dm.unito.it

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Notes
Copyright
Copyright © The Mathematical Association 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Beckenbach, E. and Bellman, R. Inequalities, Springer, Berlin (1965).Google Scholar
2. Hardy, G. H., Littlewood, J. E., and Pólya, G., Inequalities, Cambridge University Press, Cambridge (1934).Google Scholar
3. Klamkin, M. S., Inequalities concerning the arithmetic, geometric and harmonic means, Math. Gaz. 52 (May 1968) pp. 156157.CrossRefGoogle Scholar
4. Stare, Z. F., Two inequalities for the mean, Function 23 (1999) pp. 153154.Google Scholar
5. Cerin, Z., Gianella, G. M., and Stare, Z., Some inequalities among means, Atti Sem. Mat. Fis. Univ. Modena 50 (2002) pp. 299304.Google Scholar