Hostname: page-component-5b777bbd6c-5mwv9 Total loading time: 0 Render date: 2025-06-21T04:43:46.452Z Has data issue: false hasContentIssue false

109.29 Reverse of the Weitzenböck inequality

Published online by Cambridge University Press:  20 June 2025

Wei-Dong Jiang*
Affiliation:
Department of Information Engineering, Weihai Vocational College, Weihai City 264210, ShanDong province, P. R. CHINA e-mail: jackjwd@163.com

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Notes
Copyright
© The Authors, 2025 Published by Cambridge University Press on behalf of The Mathematical Association

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Weitzenböck, R., Uber eine ungleichung in der dreiecksgeometrie, Math. Zeitschr. 5 (1919) pp. 137146. Google Scholar
von Finsler, P., Hadwiger, H., Einige Relationen im Dreieck, Commentarii Mathematici Helvetici, 10(1) (1937) pp. 316326.CrossRefGoogle Scholar
Lukarevski, M., The circummidarc triangle and the Finsler-Hadwiger inequality, Math. Gaz. 104 (July 2020) pp. 335338.CrossRefGoogle Scholar
Lukarevski, M., Marinescu, D. S., A refinement of the Kooi’s inequality, Mittenpunkt and applications, J. Math. Inequal. 13(3) (2019) pp. 827832.Google Scholar
Lukarevski, M., A new look at the fundamental triangle inequality, Math. Mag. 96:2 (2023) pp. 141149.CrossRefGoogle Scholar
Lukarevski, M., Wanner, G., Mixtilinear radii and Finsler-Hadwiger inequality, Elem. Math. 75 (2020) pp. 121124.CrossRefGoogle Scholar