Hostname: page-component-7f64f4797f-tldsr Total loading time: 0.001 Render date: 2025-11-09T05:34:02.868Z Has data issue: false hasContentIssue false

New Technology and OB/HRM in China: Digital Methods for Organizational Research

Published online by Cambridge University Press:  07 November 2025

Ning Li*
Affiliation:
Tsinghua University, China
Wei He
Affiliation:
Nanjing University, China
Kai Chi Yam
Affiliation:
National University of Singapore, Singapore
Helen H. Zhao
Affiliation:
University of Hong Kong, Hong Kong
*
Corresponding author: Ning Li; Email: lining@sem.tsinghua.edu.cn

Abstract

The digital transformation of Chinese companies offers a new frontier for organizational research. Widespread use of workplace platforms creates rich archives of unobtrusive data, providing continuous, real-time insights into organizational life that traditional surveys cannot capture. The central challenge for scholars is turning this data abundance into meaningful theory. This special issue highlights three studies that meet this challenge by using innovative methods to convert granular data into valuable knowledge. The papers employ digital-context experiments, real-time behavioral tracking, and machine-learning-assisted theory building to study phenomena from interpersonal dynamics to crisis productivity. Looking ahead, we explore the potential of unstructured multimodal data and new AI tools to make complex analysis more accessible. We conclude with a research agenda calling for methodological rigor, interdisciplinary collaboration, and a firm balance between technological innovation and theoretical depth.

摘要

摘要

中国企业的数字化转型为组织研究开辟了新前沿。平台式企业以及大量办公软件的应用创造了丰富的,不受人主观干涉的数据档案, 提供了传统的问卷调查无法捕捉的持续、实时的对于组织生活的记录。管理学者面临的核心挑战是如何从这些数据中找到值得研究的现象和研究问题,继而创建有意义的理论。本专刊重点介绍了三篇论文,展现她们是如何使用有创意的新方法,把颗粒度很细的数据转化为有价值的知识的。这三篇论文分别采用数字情境实验、实时行为追踪、和机器学习辅助构建理论等方法, 来研究从动态人际关系到危机生产力等现象。文章接着展望未来, 探讨了非结构化多模态数据的潜力,以及可以使复杂的数据分析变得更容易的新 AI工具。最后,文章呼吁方法论严谨、跨学科合作, 以及保持技术创新与理论深度之间的平衡。

Information

Type
Perspectives
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of International Association for Chinese Management Research.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Boyd, D., & Crawford, K. 2012. Critical questions for big data: Provocations for a cultural, technological, and scholarly phenomenon. Information, Communication & Society, 15(5): 662679. https://doi.org/10.1080/1369118X.2012.678878CrossRefGoogle Scholar
Burgoon, J. K. 1993. Interpersonal expectations, expectancy violations, and emotional communication. Journal of Language and Social Psychology, 12(1–2): 3048. https://doi.org/10.1177/0261927X93121003CrossRefGoogle Scholar
Choudhury, P., Allen, R. T., & Endres, M. G. 2021. Machine learning for pattern discovery in management research. Strategic Management Journal, 42(1): 3057. https://doi.org/10.1002/smj.3215CrossRefGoogle Scholar
Colicev, A., Hakkarainen, T., & Pedersen, T. 2023. Multi-project work and project performance: Friends or foes? Strategic Management Journal, 44(2): 610636. https://doi.org/10.1002/smj.3443CrossRefGoogle Scholar
Corritore, M., Goldberg, A., & Srivastava, S. B. 2020. Duality in diversity: How intrapersonal and interpersonal cultural heterogeneity relate to firm performance. Administrative Science Quarterly, 65(2): 359394. https://doi.org/10.1177/0001839219844175CrossRefGoogle Scholar
Creswell, J. W., & Plano Clark, V. L. 2017. Designing and conducting mixed methods research. Thousand Oaks, CA: Sage Publications.Google Scholar
Eisenhardt, K. M., & Graebner, M. E. 2007. Theory building from cases: Opportunities and challenges. Academy of Management Journal, 50(1): 2532. https://doi.org/10.5465/amj.2007.24160888CrossRefGoogle Scholar
Feuerriegel, S., Maarouf, A., Bär, D., Geissler, D., Schweisthal, J., Pröllochs, N., Robertson, C. E., Rathje, S., Hartmann, J., Mohammad, S. M., Netzer, O., Siegel, A. A., Plank, B., & Van Bavel, J. J. 2025. Using natural language processing to analyse text data in behavioural science. Nature Reviews Psychology, 4: 96111. https://doi.org/10.1038/s44159-024-00392-zCrossRefGoogle Scholar
Goh, K. T., & Pentland, B. T. 2019. From actions to paths to patterning: Toward a dynamic theory of patterning in routines. Academy of Management Journal, 62(6): 19011929. https://doi.org/10.5465/amj.2018.0042CrossRefGoogle Scholar
Grimmer, J., Roberts, M. E., & Stewart, B. M. 2022. Text as data: A new framework for machine learning and the social sciences. Princeton, NJ: Princeton University Press.Google Scholar
Hill, A. D., White, M. A., & Wallace, J. C. 2014. Unobtrusive measurement of psychological constructs in organizational research. Organizational Psychology Review, 4(2): 148174. https://doi.org/10.1177/2041386613505613CrossRefGoogle Scholar
Hobfoll, S. E. 1989. Conservation of resources: A new attempt at conceptualizing stress. American Psychologist, 44(3): 513524. https://doi.org/10.1037/0003-066X.44.3.513CrossRefGoogle ScholarPubMed
Hobfoll, S. E., Halbesleben, J., Neveu, J. P., & Westman, M. 2018. Conservation of resources in the organizational context: The reality of resources and their consequences. Annual Review of Organizational Psychology and Organizational Behavior, 5: 103128. https://doi.org/10.1146/annurev-orgpsych-032117-104640CrossRefGoogle Scholar
Knight, A. P. 2018. Innovations in unobtrusive methods. In Bryman, A. & Buchanan, D. A. (Eds.), Unconventional methodology in organization and management research: 6482. Oxford, UK: Oxford University Press.Google Scholar
Lazer, D., Pentland, A., Adamic, L., Aral, S., Barabási, A. L., Brewer, D., Christakis, N., Contractor, N., Fowler, J., Gutmann, M., Jebara, T., & Van Alstyne, M. 2009. Computational social science. Science, 323(5915): 721723. https://doi.org/10.1126/science.11677CrossRefGoogle ScholarPubMed
Leavitt, K., Schabram, K., Hariharan, P., & Barnes, C. M. 2021. Ghost in the machine: On organizational theory in the age of machine learning. Academy of Management Review, 46(4): 750777. https://doi.org/10.5465/amr.2019.0247CrossRefGoogle Scholar
Li, F., Nucciarelli, A., Roden, S., & Graham, G. 2016. How smart cities transform operations models: A new research agenda for operations management in the digital economy. Production Planning and Control, 27(6): 514528. https://doi.org/10.1080/09537287.2016.1147096CrossRefGoogle Scholar
Molina, M., & Garip, F. 2019. Machine learning for sociology. Annual Review of Sociology, 45: 2745. https://doi.org/10.1146/annurev-soc-073117-041106CrossRefGoogle Scholar
Parker, G. G., Van Alstyne, M. W., & Choudary, S. P. 2016. Platform revolution: How networked markets are transforming the economy and how to make them work for you. New York: W. W. Norton & Company.Google Scholar
Salganik, M. J. 2017. Bit by bit: Social research in the digital age. Princeton, NJ: Princeton University Press.Google Scholar
Teece, D. J. 2007. Explicating dynamic capabilities: The nature and microfoundations of (sustainable) enterprise performance. Strategic Management Journal, 28(13): 13191350. https://doi.org/10.1002/smj.640CrossRefGoogle Scholar
Tufekci, Z. 2014. Big questions for social media big data: Representativeness, validity and other methodological pitfalls. Proceedings of the International AAAI Conference on Web and Social Media, 8(1): 505514. https://doi.org/10.48550/arXiv.1403.7400CrossRefGoogle Scholar
Yam, K. C., Bigman, Y. E., Tang, P. M., Ilies, R., De Cremer, D., Soh, H., & Gray, K. 2021. Robots at work: People prefer—and forgive—service robots with perceived feelings. Journal of Applied Psychology, 106(11): 15571572. https://doi.org/10.1037/apl0000834CrossRefGoogle ScholarPubMed