Hostname: page-component-cb9f654ff-mx8w7 Total loading time: 0 Render date: 2025-08-30T04:57:51.618Z Has data issue: false hasContentIssue false

The impact of temperature anomalies on production and financial markets

Published online by Cambridge University Press:  07 August 2025

Luccas Assis Attílio*
Affiliation:
Federal University of Ouro Preto, Ouro Preto, Brazil
Joao Ricardo Faria
Affiliation:
Florida Atlantic University, Boca Raton, FL, USA
*
Corresponding author: Luccas Assis Attílio; luccas.attilio@ufop.edu.br

Abstract

Climate change can have significant consequences on the world economy, a possibility explored in this paper. We simulate the world economy using data from 20 economies spanning from 1999 to 2023 in a Global Vector Autoregression (GVAR) framework. Our hypothesis posits that temperature anomaly shocks impact economies through financial markets, which then transmit the shock to production. We model financial markets using four key indicators: currency markets, stock markets, short-term credit markets, and long-term credit markets. Our findings reveal that temperature anomaly shocks: i) trigger a global recession, ii) induce fluctuations across all financial markets, iii) lead to depreciation of domestic currencies, declines in stock markets, and decreases in long-term interest rates, and iv) elicit a minor response in short-term interest rates. These results highlight the presence of spillover effects from temperature anomalies. We validated our findings using alternative configurations (time-varying and fixed bilateral trade), with the main conclusions remaining consistent. Our study suggests that financial markets, particularly the stock market, serve as transmission channels for the consequences of climate change.

Information

Type
Articles
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Aguilar-Gomez, S., Gutierrez, E., Heres, D., Jaume, D. and Tobal, M.. (2024). Thermal stress and financial distress: extreme temperatures and firms’ loan defaults in Mexico. Journal of Development Economics 168, 103246.10.1016/j.jdeveco.2023.103246CrossRefGoogle Scholar
Andrikopoulos, A., Wang, C. and Zheng, M.. (2019). Is there still a weather anomaly? An investigation of stock and foreign exchange markets. Finance Research Letters 30, 5159.10.1016/j.frl.2019.03.026CrossRefGoogle Scholar
Apergis, N. and Rehman, M. U.. (2024). The asymmetric role of temperature deviations in economic growth: fresh evidence from global countries and panel quantile estimates. International Journal of Finance & Economics 30(1), 893903.10.1002/ijfe.2952CrossRefGoogle Scholar
Aslan, A., Altinoz, B. and Polat, M. A.. (2024). Investigation of the sensitivity of EU countries to temperature anomalies in terms of economic and technological indicators. Journal of the Knowledge Economy 15(1), 24012421.10.1007/s13132-023-01291-zCrossRefGoogle Scholar
Attílio, L. A., Faria, J. R. and Rodrigues, M.. (2023). Does monetary policy impact CO2 emissions? A GVAR analysis. Energy Economics 119, 106559.10.1016/j.eneco.2023.106559CrossRefGoogle Scholar
Attílio, L. A., Faria, J. R. and McAdam, P.. (2025). Climate investments, stock markets, and the open economy. Macroeconomic Dynamics 29, e58. DOI: 10.1017/S1365100524000348.10.1017/S1365100524000348CrossRefGoogle Scholar
Berg, K. A., Curtis, C. C. and Mark, N.. (2023). Gdp and temperature: Evidence on cross-country response heterogeneity (No. w31327), National Bureau of Economic Research.10.3386/w31327CrossRefGoogle Scholar
Blanchard, O. (1981). Output, the stock market, and interest rates. American Economic Review 71(1), 132143.Google Scholar
Bonato, M., Cepni, O., Gupta, R. and Pierdzioch, C.. (2023). Climate risks and realized volatility of major commodity currency exchange rates. Journal of Financial Markets 62, 100760.10.1016/j.finmar.2022.100760CrossRefGoogle Scholar
Cao, M. and Wei, J.. (2005). Stock market returns: a note on temperature anomaly. Journal of Banking & Finance 29(6), 15591573.10.1016/j.jbankfin.2004.06.028CrossRefGoogle Scholar
Chen, F., Zhang, J. and Chen, Z.. (2024). Assessment of the effects of extreme temperature on economic activity. Ecological Economics 222, 108225.10.1016/j.ecolecon.2024.108225CrossRefGoogle Scholar
Ciccarelli, M., Kuik, F. and Hernández, C. M.. (2024). The asymmetric effects of temperature shocks on inflation in the largest euro area countries. European Economic Review 168, 104805.10.1016/j.euroecorev.2024.104805CrossRefGoogle Scholar
Colacito, R., Hoffmann, B. and Phan, T.. (2019). Temperature and growth: a panel analysis of the united states. Journal of Money, Credit and Banking 51(2-3), 313368.10.1111/jmcb.12574CrossRefGoogle Scholar
Considine, J., Galkin, P., Hatipoglu, E. and Aldayel, A.. (2023). The effects of a shock to critical minerals prices on the world oil price and inflation. Energy Economics 127, 106934.10.1016/j.eneco.2023.106934CrossRefGoogle Scholar
Dees, S., Mauro, F. D., Pesaran, M. H. and Smith, L. V.. (2007). Exploring the international linkages of the euro area: a global VAR analysis. Journal of Applied Econometrics 22, 138.10.1002/jae.932CrossRefGoogle Scholar
Eickmeier, S. and Ng, T.. (2015). How do US credit supply shocks propagate internationally? A GVAR approach. European Economic Review 74, 128145.10.1016/j.euroecorev.2014.11.011CrossRefGoogle Scholar
Engstrom, E. C. and Sharpe, S. A.. (2019). The near-term forward yield spread as a leading indicator: a less distorted mirror. Financial Analysts Journal 75, 3749.10.1080/0015198X.2019.1625617CrossRefGoogle Scholar
Farajzadeh, Z., Ghorbanian, E. and Tarazkar, M. H.. (2022). The shocks of climate change on economic growth in developing economies: evidence from Iran. Journal of Cleaner Production 372, 133687.10.1016/j.jclepro.2022.133687CrossRefGoogle Scholar
Faria, J. R., Tindall, G. and Terjensen, S.. (2022). The green Tobin’s q: theory and evidence. Energy Economics 110, 106033.10.1016/j.eneco.2022.106033CrossRefGoogle Scholar
Faria, J. R., McAdam, P. and Viscolani, B.. (2023). Monetary policy, neutrality, and the environment. Journal of Money, Credit and Banking 55(7), 18891906.10.1111/jmcb.13002CrossRefGoogle Scholar
Felbermayr, G., Gröschl, J., Sanders, M., Schippers, V. and Steinwachs, T.. (2022). The economic impact of weather anomalies. World Development 151, 105745.10.1016/j.worlddev.2021.105745CrossRefGoogle Scholar
Floros, C. (2008). Stock market returns and the temperature effect: new evidence from Europe. Applied Financial Economics Letters 4(6), 461467.10.1080/17446540801998585CrossRefGoogle Scholar
Hao, X., Chen, F. and Chen, Z.. (2023). Abnormal weather and loan bias: evidence from China’s FinTech credit market. Environmental Impact Assessment Review 102, 107164.10.1016/j.eiar.2023.107164CrossRefGoogle Scholar
Henseler, M. and Schumacher, I.. (2019). The impact of weather on economic growth and its production factors. Climatic Change 154(3), 417433.10.1007/s10584-019-02441-6CrossRefGoogle Scholar
Holtermann, L. (2020). Precipitation anomalies, economic production, and the role of, first-nature, and, second-nature, geographies: a disaggregated analysis in high-income countries. Global Environmental Change 65, 102167.10.1016/j.gloenvcha.2020.102167CrossRefGoogle Scholar
Hunjra, A. I., Azam, M. and Al-Faryan, M. A. S.. (2022). The nexus between climate change risk and financial policy uncertainty. International Journal of Finance & Economics 29(2), 14011416.10.1002/ijfe.2739CrossRefGoogle Scholar
Khalfaoui, R., Goodell, J. W., Mefteh-Wali, S., Chishti, M. Z. and Gozgor, G.. (2024). Impact of climate risk shocks on global food and agricultural markets: a multiscale and tail connectedness analysis. International Review of Financial Analysis 93, 103206.10.1016/j.irfa.2024.103206CrossRefGoogle Scholar
Lee, S. O., Mark, N. C., Nauerz, J., Rawls, J. and Wei, Z.. (2022). Global temperature shocks and real exchange rates. Journal of Climate Finance 1, 100004.10.1016/j.jclimf.2022.100004CrossRefGoogle Scholar
Makkonen, A., Vallström, D., Uddin, G. S., Rahman, M. L. and Haddad, M. F. C.. (2021). The effect of temperature anomaly and macroeconomic fundamentals on agricultural commodity futures returns. Energy Economics 100, 105377.10.1016/j.eneco.2021.105377CrossRefGoogle Scholar
Mukherjee, K. and Ouattara, B.. (2021). Climate and monetary policy: Do temperature shocks lead to inflationary pressures? Climatic Change 167(3-4), 32.10.1007/s10584-021-03149-2CrossRefGoogle Scholar
Nordhaus, W. (2019). Climate change: the ultimate challenge for economics. American Economic Review 109, 19912014.10.1257/aer.109.6.1991CrossRefGoogle Scholar
Ortiz-Bobea, A., Ault, T. R., Carrillo, C. M., Chambers, R. G. and Lobell, D. B.. (2021). Anthropogenic climate change has slowed global agricultural productivity growth. Nature Climate Change 11, 306312.10.1038/s41558-021-01000-1CrossRefGoogle Scholar
Peillex, J., El Ouadghiri, I., Gomes, M. and Jaballah, J.. (2021). Extreme heat and stock market activity. Ecological Economics 179, 106810.10.1016/j.ecolecon.2020.106810CrossRefGoogle Scholar
Pesaran, M. H., Schuermann, T. and Weiner, S. M.. (2004). Modeling regional interdependencies using a global error-correcting macroeconometric model. Journal of Business & Economic Statistics 22(2), 129162.10.1198/073500104000000019CrossRefGoogle Scholar
Rosenberg, J. and Maurer, S.. (2008). Signal or noise? Implications of the term premium for recession forecasting. Federal Reserve Bank of New York, Economic Policy Review 14(1).Google ScholarPubMed
Subak, S., Palutikof, J. P., Agnew, M. D., Watson, S. J., Bentham, C. G., Cannell, M. G. R.. (2000). The impact of the anomalous weather of 1995 on the UK economy. Climatic Change 44, 126.10.1023/A:1005566710285CrossRefGoogle Scholar
Taşkin, D., Cagli, E. C. and Evrim Mandaci, P.. (2021). The impact of temperature anomalies on commodity futures. Energy Sources, Part B: Economics, Planning, and Policy 16(4), 357370.10.1080/15567249.2021.1922546CrossRefGoogle Scholar
Tzouvanas, P., Kizys, R., Chatziantoniou, I. and Sagitova, R.. (2019). Can variations in temperature explain the systemic risk of European firms? Environmental and Resource Economics 74(4), 17231759.10.1007/s10640-019-00385-0CrossRefGoogle Scholar
Uzair Ali, M., Gong, Z., Ali, M. U., Asmi, F. and Muhammad, R.. (2022). CO2 emission, economic development, fossil fuel consumption and population density in India, Pakistan and Bangladesh: a panel investigation. International Journal of Finance & Economics 27(1), 1831.10.1002/ijfe.2134CrossRefGoogle Scholar
Yang, L. and Hamori, S.. (2023). Modeling the global sovereign credit network under climate change. International Review of Financial Analysis 87, 102618.10.1016/j.irfa.2023.102618CrossRefGoogle Scholar