Hostname: page-component-cb9f654ff-mx8w7 Total loading time: 0 Render date: 2025-08-27T09:14:34.810Z Has data issue: false hasContentIssue false

Endogenous vs exogenous fluctuations: unveiling the impact of heterogeneous expectations

Published online by Cambridge University Press:  08 August 2025

Domenico Delli Gatti*
Affiliation:
CLE, Università Cattolica del Sacro Cuore, Largo Gemelli 1, Milano, Italy
Filippo Gusella
Affiliation:
CLE, Università Cattolica del Sacro Cuore, Largo Gemelli 1, Milano, Italy Università degli Studi di Firenze, Florence, Italy New York University in Florence, Florence, Italy
Giorgio Ricchiuti
Affiliation:
CLE, Università Cattolica del Sacro Cuore, Largo Gemelli 1, Milano, Italy Università degli Studi di Firenze, Florence, Italy
*
Corresponding author: Domenico Delli Gatti, domenico.delligatti@unicatt.it

Abstract

This paper investigates the nature of financial market fluctuations by empirically testing three competing models of instability. We contrast a linear state-space model and a nonlinear Markov-switching model – both rooted in heterogeneous behavioral heuristics and capable of generating endogenous dynamics – with a benchmark linear random walk model that assumes exogenous shocks. Using monthly S&P 500 data from 1990 to 2019, we find strong evidence supporting endogenous sources of instability. In particular, models incorporating behavioral nonlinearities significantly outperform both the linear behavioral model and the random walk in short-, medium-, and long-term forecasting. Our findings underscore the importance of accounting for heterogeneous expectations and regime-switching behavior in explaining asset price dynamics.

Information

Type
Articles
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Ahrens, R. and Reitz, S.. (2005) Heterogeneous expectations in the foreign exchange market: evidence from daily DM/US dollar exchange rates. Journal of Evolutionary Economics 15, 6582.CrossRefGoogle Scholar
Alfarano, S. and Lux, T.. (2007) A noise trader model as a generator of apparent financial power laws and long memory. Macroeconomic Dynamics 11(S1), 80101.10.1017/S1365100506060299CrossRefGoogle Scholar
Anufriev, M. and Hommes, C.. (2012) Evolutionary selection of individual expectations and aggregate outcomes in asset pricing experiments. American Economic Journal: Microeconomics 4(4), 3564.Google Scholar
Ascari, G., Pecora, N. and Spelta, A.. (2018) Booms and busts in a housing market with heterogeneous agents. Macroeconomic Dynamics 22(7), 18081824.10.1017/S1365100516000882CrossRefGoogle Scholar
Bao, T., Cars, H. and Jiaoying, P.. (2021) Expectation formation in finance and macroeconomics: a review of new experimental evidence. Journal of Behavioral and Experimental Finance 32, 100591.10.1016/j.jbef.2021.100591CrossRefGoogle Scholar
Bao, T., Hennequin, M., Hommes, C. and Massaro, D.. (2020) Coordination on bubbles in large-group asset pricing experiments. Journal of Economic Dynamics and Control 110, 103702.10.1016/j.jedc.2019.05.009CrossRefGoogle Scholar
Bassi, F., Ramos, R. and Lang, D.. (2023) Bet against the trend and cash in profits: an agent-based model of endogenous fluctuations of exchange rates. Journal of Evolutionary Economics, 33, 144.CrossRefGoogle Scholar
Beja, A. and Goldman, M. B.. (1980) On the dynamic behavior of prices in disequilibrium. J. Finance 35(2), 235248.10.1111/j.1540-6261.1980.tb02151.xCrossRefGoogle Scholar
Brock, W. A. and Hommes, C. H.. (1997) A rational route to randomness. Econometrica: Journal of the Econometric Society 65(5), 10591095.10.2307/2171879CrossRefGoogle Scholar
Brock, W. A. and Hommes, C. H.. (1998) Heterogeneous beliefs and routes to chaos in a simple asset pricing model. Journal of Economic Dynamics and Control 22(8-9), 12351274.CrossRefGoogle Scholar
Chen, Z. and Lux, T.. (2018) Estimation of sentiment effects in financial markets: a simulated method of moments approach. Computational Economics 52, 711744.CrossRefGoogle Scholar
Chia, W. M., Li, M. and Zheng, H.. (2017) Behavioral heterogeneity in the Australian housing market. Applied Economics 49(9), 872885.10.1080/00036846.2016.1208355CrossRefGoogle Scholar
Chiarella, C. (1992) The dynamics of speculative behavior. Annals of Operations Research 37, 101123.10.1007/BF02071051CrossRefGoogle Scholar
Chiarella, C., He, X. Z. and Pellizzari, P.. (2012) A dynamic analysis of the microstructure of moving average rules in a double auction market. Macroeconomic Dynamics 16(4), 556575.10.1017/S136510051000074XCrossRefGoogle Scholar
Chiarella, C., He, X.-Z., Huang, W. and Zheng, H.. (2012) Estimating behavioural heterogeneity under regime switching. Journal of Economic Behavior and Organization 83(3), 446460.10.1016/j.jebo.2012.02.014CrossRefGoogle Scholar
Colasante, A., Alfarano, S., Camacho, E. and Gallegati, M.. (2018) Long-run expectations in a learning-to-forecast experiment. Applied Economics Letters 25(10), 681687.10.1080/13504851.2017.1355537CrossRefGoogle Scholar
Colasante, A., Alfarano, S. and Camacho-Cuena, E.. (2019) The term structure of cross-sectional dispersion of expectations in a learning-to-forecast experiment. Journal of Economic Interaction and Coordination 14, 491520.10.1007/s11403-019-00245-6CrossRefGoogle Scholar
Colasante, A., Alfarano, S. and Camacho-Cuena, E.. (2020b) Heuristic switching model and exploration-exploitation algorithm to describe long-run expectations in ltFEs: a comparison. Computational Economics 56, 623658.10.1007/s10614-019-09951-6CrossRefGoogle Scholar
Colasante, A., Alfarano, S., Camacho-Cuena, E. and Gallegati, M.. (2020) Long-run expectations in a learning-to-forecast experiment: a simulation approach. Journal of Evolutionary Economics 30, 75116.10.1007/s00191-018-0585-1CrossRefGoogle Scholar
Commandeur, J. J. F. and Koopman, S. J.. (2007) An Introduction to State Space time Series Analysis. Oxford: Oxford University Press.Google Scholar
Day, R., Huang, W. and W. (1990) Bulls, bears and market sheep. Journal of Economic Behavior and Organization 14, 299329.10.1016/0167-2681(90)90061-HCrossRefGoogle Scholar
De Grauwe, P., Dewachter, H. and Embrechts, M.. (1993). Exchange Rate Theory-Chaotic Models of Foreign Exchange Markets. Oxford: Blackwell.Google Scholar
De Grauwe, P. and Grimaldi, M.. (2006). The exchange rate in behavioral finance framework. Princeton: Princeton University Press. 10.1515/9780691186993CrossRefGoogle Scholar
Diebold, FX. and Mariano, R. S.. (1995) Comparing predictive accuracy. Journal of Business & Economic Statistics 13, 253263.10.1080/07350015.1995.10524599CrossRefGoogle Scholar
Dieci, R. and Westerhoff, F.. (2012) A simple model of a speculative housing market. Journal of Evolutionary Economics 22, 303329.10.1007/s00191-011-0259-8CrossRefGoogle Scholar
Durbin, J. and Koopman, S. J.. (2012) Time Series Analysis by State Space Methods, vol. 38. Oxford: OUP Oxford.10.1093/acprof:oso/9780199641178.001.0001CrossRefGoogle Scholar
Enders, W. (2016) Applied Econometric Time Series. Supplementary Manual, 4th edn. New York: Wiley.Google Scholar
Fama, E. F. (1991) Efficient capital markets: II. The journal of finance 46(5), 15751617.10.1111/j.1540-6261.1991.tb04636.xCrossRefGoogle Scholar
Franke, R. (2008) Models of Asset Price Dynamics from Beja-Goldman to Brock-Hommes: A Synopsis of Specification Details. University of Kiel.Google Scholar
Franke, R. and Westerhoff, F.. (2011) Estimation of a structural stochastic volatility model of asset pricing. Computational Economics 38(1), 5383.10.1007/s10614-010-9238-7CrossRefGoogle Scholar
Franke, R. and Westerhoff, F.. (2017) Taking stock: rigorous modeling of animal spirits in macroeconomics. Journal of Economic Surveys 31(5), 11521182.CrossRefGoogle Scholar
Frijns, B. and Zwinkels, R. C. J.. (2018) Time-varying arbitrage and dynamic price discovery. Journal of Economic Dynamics and Control 91, 485502.10.1016/j.jedc.2018.03.014CrossRefGoogle Scholar
Gordon, M. J. (1959) Dividends, earnings, and stock prices. The Review of Economics and Statistics 41, 99105.10.2307/1927792CrossRefGoogle Scholar
Gori, M. and Ricchiuti, G.. (2018) A dynamic exchange rate model with heterogeneous agents. Journal of Evolutionary Economics 28, 399415.10.1007/s00191-017-0513-9CrossRefGoogle Scholar
Gusella, F. (2022) Detecting and measuring financial cycles in heterogeneous agents models: an empirical analysis. Advances in Complex Systems 25(02n03), 2240002.10.1142/S0219525922400021CrossRefGoogle Scholar
Gusella, F. and Stockhammer, E.. (2021) Testing fundamentalist-momentum trader financial cycles. An empirical analysis via the Kalman filter. Metroeconomica 72, 758797.10.1111/meca.12347CrossRefGoogle Scholar
Gusella, F. and Ricchiuti, G.. (2024) Endogenous cycles in heterogeneous agent models: a state-space approach. Journal of Evolutionary Economics 34(4), 144.10.1007/s00191-024-00870-wCrossRefGoogle Scholar
Hamilton, J. D. (1990) Analysis of time series subject to changes in regime. Journal of Econometrics 45, 3970.10.1016/0304-4076(90)90093-9CrossRefGoogle Scholar
Hamilton, J. D. (1994) Time Series Analysis. Princeton: Princeton University Press.10.1515/9780691218632CrossRefGoogle Scholar
Hamilton, J. D. (2016) Macroeconomic regimes and regime shifts. In: Hamilton, J. D. (eds.), Handbook of Macroeconomics. Amsterdam: Elsevier.Google Scholar
Harvey, A. C. (2006) Forecasting with unobserved components time series models. Handbook of Economic Forecasting 1, 327412.10.1016/S1574-0706(05)01007-4CrossRefGoogle Scholar
Heemeijer, P., Hommes, C., Sonnemans, J. and Tuinstra, J.. (2009) Price stability and volatility in markets with positive and negative expectations feedback: an experimental investigation. Journal of Economic Dynamics and Control 33, 10521072.10.1016/j.jedc.2008.09.009CrossRefGoogle Scholar
Hommes, C. (2021) Behavioral and experimental macroeconomics and policy analysis: a complex systems approach. Journal of Economic Literature 59(1), 149219.10.1257/jel.20191434CrossRefGoogle Scholar
Hommes, C. H. (2005) Heterogeneous Agents Models: Two Simple Examples, Nonlinear Dynamical Systems in Economics, CISM Courses and Lectures, Springer, pp. 131164. (No. 05-01).Google Scholar
Kindleberger, C. P. (1978) Manias, Panics, and Crashes: A History of Financial Crises. A History of Financial Crisis. London: Macmillan.10.1007/978-1-349-04338-5CrossRefGoogle Scholar
Kukacka, J. and Barunik, J.. (2017) Estimation of financial agent-based models with simulated maximum likelihood. Journal of Economic Dynamics and Control 85, 2145.10.1016/j.jedc.2017.09.006CrossRefGoogle Scholar
LeBaron, B. (2001) Evolution and time horizons in an agent-based stock market. Macroeconomic Dynamics 5(02), 225254.10.1017/S1365100501019058CrossRefGoogle Scholar
Levy, M. (2010) Agent based computational economics. In: Meyers, R. (eds.), Complex Systems in Finance and Econometrics. New York, NY: Springer.10.1007/978-1-4419-7701-4_1CrossRefGoogle Scholar
Li, X., Zhou, C. and Wu, C.. (2013) The role of heterogeneous expectations in forward exchange market. Applied Economics Letters 20(5), 471475.10.1080/13504851.2012.714061CrossRefGoogle Scholar
Lux, T. (1995) Herd behaviour, bubbles and crashes. The Economic Journal 105(431), 881896.10.2307/2235156CrossRefGoogle Scholar
Lux, T. (2018) Estimation of agent-based models using sequential monte carlo methods. Journal of Economic Dynamics and Control 91, 391408.10.1016/j.jedc.2018.01.021CrossRefGoogle Scholar
Lux, T. (2021a) Can heterogeneous agent models explain the alleged mispricing of the S&P 500? Quantitative Finance 21(9), 14131433.10.1080/14697688.2021.1909744CrossRefGoogle Scholar
Lux, T. (2021b) Bayesian estimation of agent-based models via adaptive particle Markov chain Monte Carlo. Computational Economics 60(2), 127.Google Scholar
Lux, T. and Zwinkels, R. C. J.. (2018) Empirical validation of agent-based models. Handbook of computational economics 4, 437488.10.1016/bs.hescom.2018.02.003CrossRefGoogle Scholar
Majewski, A. A., Ciliberti, S. and et Bouchaud, J.-P.. (2020) Co-existence of trend and value in financial markets: estimating an extended Chiarella model. Journal of Economic Dynamics and Control 112, 103791.10.1016/j.jedc.2019.103791CrossRefGoogle Scholar
Minsky, H. P. (1985) The financial instability hypothesis: a restatement. In: Minsky, H. P. (eds.), Post Keynesian Economic Theory. A Challenge to Neo Classical Economics, pp. 2455. Brighton: Wheatsheaf.Google Scholar
Muth, J. F. (1961) Rational expectations and the theory of price movements. Econometrica: Journal of the Econometric Society 29(3), 315335.10.2307/1909635CrossRefGoogle Scholar
Proano, C. R. (2011) Exchange rate determination, macroeconomic dynamics and stability under heterogeneous behavioral fx expectations. Journal of Economic Behavior & Organization 77(2), 177188.10.1016/j.jebo.2010.10.005CrossRefGoogle Scholar
Recchioni, M. C., Tedeschi, G. and Gallegati, M.. (2015) A calibration procedure for analyzing stock price dynamics in an agent-based framework. Journal of Economic Dynamics and Control 60, 125.10.1016/j.jedc.2015.08.003CrossRefGoogle Scholar
Schleifer, A. and Summers, L.. (1990) The noise trader approach to finance. Journal of Economic Perspectives 4(2), 1934.CrossRefGoogle Scholar
Schmitt, N. (2021) Heterogeneous expectations and asset price dynamics. Macroeconomic Dynamics 25, 15381568.10.1017/S1365100519000774CrossRefGoogle Scholar
Shiller, R. J. (2003) From efficient markets theory to behavioral finance. Journal of Economic Perspectives 17(1), 83104.10.1257/089533003321164967CrossRefGoogle Scholar
Ter Ellen, S., Hommes, C. and Zwinkels, R. C. J.. (2021) Comparing behavioural heterogeneity across asset classes. Journal of Economic Behavior and Organization 185, 747769.10.1016/j.jebo.2019.12.013CrossRefGoogle Scholar
Ter Ellen, S. and Verschoor, W.. (2018) Heterogeneous beliefs and asset price dynamics: A survey of recent evidence. In: Ter Ellen, S. and Verschoor, W.. (ed.), Essays in Honor of Georges Prat, pp. 5379. Switzerland: Springer Nature.Google Scholar
Thaler, R. H. (2015) Misbehaving: The Making of Behavioral Economics, WW Norton & Company.Google Scholar
Vigfusson, R. (1997) Switching between chartists and fundamentalists: a Markov regime-switching approach. International Journal of Finance & Economics 2(4), 291305.10.1002/(SICI)1099-1158(199710)2:4<291::AID-JFE55>3.0.CO;2-M3.0.CO;2-M>CrossRefGoogle Scholar
Vikash, R., Xiaoming, X. and Imad, A. M.. (2015) Neoclassical finance, behavioral finance and noise traders: a review and assessment of the literature. International Review of Financial Analysis 41, 89100.Google Scholar
Supplementary material: File

Delli Gatti et al. supplementary material

Delli Gatti et al. supplementary material
Download Delli Gatti et al. supplementary material(File)
File 7.4 KB