Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-25T23:08:14.329Z Has data issue: false hasContentIssue false

Torsion Units in Integral Group Ring of the Mathieu Simple Group M22

Published online by Cambridge University Press:  01 February 2010

V. A. Bovdi
Affiliation:
Institute of Mathematics, University of Debrecen, P.O. Box 12, H-4010 Debrecen, Hungary, Institute of Mathematics and Informatics, College of Nyíregyháza, Sóstói út 31/b, H-4410 Nyíregyháza, Hungary, vbovdi@math.klte.hu
A. B. Konovalov
Affiliation:
School of Computer Science, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9SX, Scotland, konovalov@member.ams.org
S. Linton
Affiliation:
School of Computer Science, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9SX, Scotland, sal@cs.st-and.ac.uk

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We investigate the possible character values of torsion units of the normalized unit group of the integral group ring of the Mathieu sporadic group M22. We confirm the Kimmerle conjecture on prime graphs for this group and specify the partial augmentations for possible counterexamples to the stronger Zassenhaus conjecture.

Type
Research Article
Copyright
Copyright © London Mathematical Society 2008

References

1.Artamonov, V. A. and Bovdi, A. A., ‘Integral group rings: groups of invertible elements and classical K-theory’, Algebra. Topology. Geometry (Russian), Itogi Nauki i Tekhniki 27 (Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1989) 343, 232.Google Scholar
2.Berman, S. D., ‘On the equation xm = 1 in an integral group ring’, Ukrain. Mat. Ž. 7 (1955) 253261.Google Scholar
3.Bleher, F. M. and Kimmerle, W., ‘On the structure of integral group rings of sporadic groups’, LMS J. Comput. Math. 3 (2000) 274306 (electronic).CrossRefGoogle Scholar
4.Bovdi, V. and Hertweck, M., ‘Zassenhaus conjecture for central extensions of S5, J. Group Theory, to appear, arXiv:math.RA/0609435vl.Google Scholar
5.Bovdi, V., Höfert, C. and Kimmerle, W., ‘On the first Zassenhaus conjecture for integral group rings’, Publ. Math. Debrecen 65 (2004) 291303.CrossRefGoogle Scholar
6.Bovdi, V., Jespers, E. and Konovalov, A., ‘Torsion units in integral group rings of Janko simple groups’, Preprint, 2006, arXiv:math/0608441v3.Google Scholar
7.Bovdi, V. and Konovalov, A., ‘Integral group ring of the first Mathieu simple group’, Groups St. Andrews 2005, Vol. I, London Math. Soc. Lecture Note Ser. 339 (Cambridge University Press, Cambridge, 2007) 237245.CrossRefGoogle Scholar
8.Bovdi, V. and Konovalov, A., ‘Integral group ring of the Mathieu simple group M23, Gomm. Algebra, to appear, arXiv:math/0612640v2.Google Scholar
9.Bovdi, V., Konovalov, A., Rossmanith, R. and Schneider, Cs., LAGUNA—Lie Algebras and Units of group Algebras, version 3.4, 2007, http://ukrgap.exponenta.ru/laguna.htm.Google Scholar
10.Bovdi, V., Konovalov, A. and Siciliano, S., ‘Integral group ring of the Mathieu simple group M12, Rend. Girc. Mat. Palermo (2) 56 (2007) 125136.CrossRefGoogle Scholar
11.Cohn, J. A. and Livingstone, D., ‘On the structure of group algebras. I’, Canad. J. Math. 17 (1965) 583593.CrossRefGoogle Scholar
12.Conway, J. H., Curtis, R. T., Norton, S. P., Parker, R. A. and Wilson, R. A., Atlas of Finite Groups. Maximal subgroups and ordinary characters for simple groups. With computational assistance from J. G. Thackray (Oxford University Press, Eynsham, 1985).Google Scholar
13.The GAP Group, GAP – Groups, Algorithms, and Programming, Version 4.4.9, 2006, http://www.gap-system.org.Google Scholar
14.Hertweck, M., ‘On the torsion units of some integral group rings’, Algebra Colloq. 13 (2006) 329348.CrossRefGoogle Scholar
15.Hertweck, M., ‘Partial augmentations and Brauer character values of torsion units in group rings’, Comm. Algebra, to appear, arXiv:math.RA/0612429v2.Google Scholar
16.Hertweck, M., ‘Torsion units in integral group rings of certain metabelian groups’, Proc. Edinb. Math. Soc., to appear.Google Scholar
17.Höfert, C. and Kimmerele, W., ‘On torsion units of integral group rings of groups of small order’, Groups, rings and group rings, Lect. Notes Pure Appl. Math. 248 (Chapman & Hall/CRC, Boca Raton, FL, 2006) 243252.CrossRefGoogle Scholar
18.Jansen, C., Lux, K., Parker, R. and Wilson, R., An Atlas of Brauer Characters, London Mathematical Society Monographs New Series 11 (Clarendon Press, Oxford University Press, New York, 1995), Appendix 2 by T. Breuer and S. Norton.Google Scholar
19.Kimmerle, W., ‘On the prime graph of the unit group of integral group rings of finite groups’, Groups, rings and algebras, Contemp. Math. 420 (American Mathematical Society, Providence, RI, 2006) 215228.CrossRefGoogle Scholar
20.Luthar, I. S. and Passi, I. B. S., ‘Zassenhaus conjecture for A5, Proc. Indian Acad. Sci. Math. Sci. 99 (1989) 15.CrossRefGoogle Scholar
21.Luthar, I. S. and Trama, P., ‘Zassenhaus conjecture for S5, Comm. Algebra 19 (1991) 23532362.CrossRefGoogle Scholar
22.Marciniak, Z., Ritter, J., Sehgal, S. K. and Weiss, A., ‘Torsion units in integral group rings of some metabelian groups. II’, J. Number Theory 25 (1987) 340352.CrossRefGoogle Scholar
23.Sandling, R., ‘Graham Higman's thesis “Units in group rings”’, Integral representations and applications, Oberwolfach, 1980, Lecture Notes in Mathematics 882 (Springer, Berlin, 1981) 93116.CrossRefGoogle Scholar
24.Witt, E., ‘Die 5-fach transitiven Gruppen von Mathieu’, Abh. Math. Semin. Hansische Univ. 12 (1938) 256264.CrossRefGoogle Scholar
25.Zassenhaus, H., ‘On the torsion units of finite group rings’ (Portuguese), Studies in mathematics (in honor of A. Almeida Costa) (Instituto de Alta Cultura, Lisbon, 1974) 119126.Google Scholar