Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-11T14:52:27.507Z Has data issue: false hasContentIssue false

A Recursive Method for Computing Zeta Functions of Varieties

Published online by Cambridge University Press:  01 February 2010

Alan G. B. Lauder
Affiliation:
Mathematical Institute, Oxford University, 24–29 St Giles, Oxford, United Kingdom, lauder@maths.ox.ac.uk, http://www.maths.ox.ac.uk/~lauder/

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present an algorithm that reduces the problem of calculating a numerical approximation to the action of absolute Frobenius on the middle-dimensional rigid cohomology of a smooth projective variety over a finite held, to that of performing the same calculation for a smooth hyperplane section. When combined with standard geometric techniques, this yields a method for computing zeta functions which proceeds ‘by induction on the dimension’. The ‘inductive step’ combines previous work of the author on the deformation of Frobenius with a higher rank generalisation of Kedlaya's algorithm. The analysis of the loss of precision during the algorithm uses a deep theorem of Christol and Dwork on p-adic solutions to differential systems at regular singular points. We apply our algorithm to compute the zeta functions of compactifications of certain surfaces which are double covers of the affine plane.

Type
Research Article
Copyright
Copyright © London Mathematical Society 2006

References

1. Abbot, T. G., Kedlaya, K. and Roe, D., ‘Bounding Picard numbers of surfaces using p-adic cohomology’, Proc. Arith. Geom. and Coding Theory (Luminy 2005), to appear, www-math.mit. edu/~kedlaya/papers/, arxiv. org/abs/math.NT/0 601508.Google Scholar
2. Adolphson, A., An index theorem for p-adic differential operators’, Trans. Amer. Math. Soc. 216 (1976) 279293.Google Scholar
3. Baldassarri, F. and Chiarellotto, B., Algebraic versus rigid cohomology with logarithmic coefficients’, Barsotti Symposium on Algebraic Geometry (ed. Cristante, V. and Messing, W., Academic Press, 1994) 1150.CrossRefGoogle Scholar
4. Berthelot, P., ‘Géometrie rigide et cohomologie des variétés algébriques de caractéristique p'’, Mém. Soc. Math. France (2) 23 (1986) 732.CrossRefGoogle Scholar
5. Berthelot, P., ‘Cohomologie rigide et cohomologie rigide a supports propres, Première partie, (version provisoire 1991)’, Prepublication 96–03, Institut de Recherche Mathematique de Rennes, 1996.Google Scholar
6. Berthelot, P., with an appendix in English by A. J. de Jong, ‘Finitude et purete cohomologique en cohomologie rigide’, Invent. Math. 128 (1997) 329377.CrossRefGoogle Scholar
7. Christol, G. and Dwork, B., ‘Effective p-adic bounds at regular singular points’, Duke. Math. J. 62 (1991) 689720.CrossRefGoogle Scholar
8. Clark, D. N., ‘A note on the p-adic convergence of solutions of linear differential equations’, Proc. Amer. Math. Soc. 17 (1966) 262269.Google Scholar
9. Cox, D., Little, J. and O'SHEA, D., Ideals, varieties, and algorithms, 2nd edn (Springer, 1997).Google Scholar
10. Danilov, V. I. and Khovanskiĭ, A. G., ‘Newton polyhedra and an algorithm for computing Hodge-Deligne numbers’, Math. USSR Izv. 29 (1987) 279298.CrossRefGoogle Scholar
11. Deligne, P.La conjecture de Weil: I’, Publ. Math. Inst. Hautes Études Sci. 43 (1974) 273307.CrossRefGoogle Scholar
12. Deligne, P. and Katz, N., ‘Groupes de monodromie en géometrie algébrique’, Séminaire de Géometrie Algébrique du Bois-Marie 19671969, SGA 7 II, Lecture Notes in Mathematics 340 (Springer, 1973).Google Scholar
13. Dwork, B., Gerotto, G. and Sullivan, F. J., An introduction to G-functions, Annals of Mathematical Studies 133 (Princeton University Press, 1994).Google Scholar
14. Edixhoven, B., ‘Point counting after Kedlaya’, EIDMA-Stieltjes graduate course, Leyden, September 2226, 2003, http://www.math.leidenuniv.nl/~edix/Google Scholar
15. Edixhoven, B., Couveignes, J.-M., DE JONG, R., Merkl, F. and Bosman, J., ‘On the computation of coefficients of a modular form’, progress report, 2006, http://arxiv.org/math.NT/0605244.CrossRefGoogle Scholar
16. Etesse, J.-Y. and Le Stum, B., ‘Fonctions L associées aux F-isocristaux surconvergents I: Interprétation cohomologique’, Math. Ann. 296 (1993) 557576.CrossRefGoogle Scholar
17. Von Zur Gathen, J. and Gerhard, J., Modern computer algebra (Cambridge University Press, 1999).Google Scholar
18. Gerkmann, R., ‘Relative rigid cohomology and point counting on families of elliptic curves’, preprint 2005, available with MAGMA implementation, www.mathematik.uni-mainz.de/~gerkmann/.Google Scholar
19. Hubrechts, H., ‘Point counting on families of hyperelliptic curves’, preprint, 2005, http://arxiv.org/math.NT/0601438.Google Scholar
20. Illusie, L., ‘Crystalline cohomology’, Motives, ed. Jannsen, U. et al. , Proc. Symp. Pure Math. 55 (Amer. Math. Soc, Providence, RI, 1994) 43‘70.Google Scholar
21. Katz, N. M., ‘Nilpotent connections and the monodromy theorem: applications of a result of Turrittin’, Publ. Math. Inst. Hautes Études Sci. 39 (1970) 175232.CrossRefGoogle Scholar
22. Katz, N., ‘Travaux de Dwork’, Séminaire Bourbaki 24,409 (1971/1972) 167200.CrossRefGoogle Scholar
23. Katz, N. M., An overview of Deligne's proof of the Riemann hypothesis for varieties over finite fields’, Mathematical developments arising from Hilbert problems, Proc. Symp. Pure Math. 28 (Amer. Math. Soc, Providence, RI, 1976) 275305.CrossRefGoogle Scholar
24. Katz, N. M. and Oda, T., ‘On the differentiation of De Rham cohomology classes with respect to parameters’, J. Math. Kyoto Univ. 8 (1968) 199213.Google Scholar
25. Kedlaya, K., ‘Counting points on hyperelliptic curves using Monsky-Washnitzer cohomology’, J. RamanujanMath. Soc. 16 (2001) 323338.Google Scholar
26. Kedlaya, K., ‘Computing zeta functions via p-adic cohomology’, ANTS 2004, ed. Buell, D. A., Lecture Notes in Computer Science 3076 (Springer, 2004) 117.Google Scholar
27. Kedlaya, K., ‘Finiteness of rigid cohomology with coefficients’, Duke Math. J. 134 (2006) 1597.CrossRefGoogle Scholar
28. Kedlaya, K., ‘Fourier transforms and p-adic “Weil II”’, Compositio Math., to appear, http://arxiv.org/math.NT/0210149.Google Scholar
29. Kleiman, S. L., ‘The standard conjectures’, Motives, ed. Jannsen, U. et al. , Proc. Symp. Pure Math. 55 (Amer. Math. Soc, Providence, RI, 1994) 320.CrossRefGoogle Scholar
30. Lauder, A. G. B., ‘Counting solutions to equations in many variables over finite fields’, Found. Comput. Math. 4 (2004) 221267.CrossRefGoogle Scholar
31. Lauder, A. G. B., ‘Rationality and meromorphy of zeta functions, Finite Fields Appl. 11 (2005) 491510.CrossRefGoogle Scholar
32. Lauder, A. G. B., ‘Rigid cohomology and p-adic point counting’, J. Theor. Nombres Bordeaux 17 (2005) 169180.CrossRefGoogle Scholar
33. Lauder, A. G. B. and Wan, D., ‘Counting points on varieties over finite fields of small characteristic’, Algorithmic number theory: lattices, number fields, curves and cryptography, ed. Buhler, J. P. and Stevenhagen, P., Math. Sci. Res. Inst. Publ. 44, to appear.Google Scholar
34. Mazur, B., ‘Frobenius and the Hodge filtration’, Bull. Amer. Math. Soc. 78 (1972) 653667.CrossRefGoogle Scholar
35. Milne, J. S., ‘Lectures on étale cohomology’, http://www.jmilne.org/math/.Google Scholar
36. Pila, J., ‘Frobenius maps of abelian varieties and finding roots of unity in finite fields’, Math. Comp. 55 (1990) 745763.CrossRefGoogle Scholar
37. Van Der Put, M. and Singer, M., Galois theory of linear differential equations, Grund. Math. Wiss. 328 (Springer, 2003).CrossRefGoogle Scholar
38. Schoof, R., ‘Elliptic curves over finite fields and the computation of square roots modulo p’, Math. Comp. 44 (1985) 483494.Google Scholar
39. Setoyanagi, M., ‘Note on Clark’s theorem for p-adic convergence’, Proc. Amer. Math. Soc. 125 (1997) 717721.CrossRefGoogle Scholar
40. Tsuzuki, N., ‘On base change theorem and coherence in rigid cohomology’, Doc. Math., Extra Volume Kato (2003) 891918.Google Scholar
41. Tsuzuki, N., Bessel F-isocrystals and an algorithm for computing Kloosterman sums’, preprint, 2003.Google Scholar
42. Wan, D., ‘Newton polygons of zeta functions and L-functions’, Ann. of Math. 137 (1993) 249293.CrossRefGoogle Scholar
43. Wan, D., ‘Algorithmic theory of zeta functions over finite fields’, Algorithmic number theory: lattices, number fields, curves and cryptography, ed. Buhler, J. P. and Stevenhagen, P., Math. Sci. Res. Inst. Publ. 44, to appear.Google Scholar