Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-25T23:28:40.447Z Has data issue: false hasContentIssue false

Computing a Chief Series and the Soluble Radical of a Matrix Group Over a Finite Field

Published online by Cambridge University Press:  01 February 2010

Derek F. Holt
Affiliation:
Mathematics Institute, University of Warwick, Coventry, CV4 7AL, United Kingdom, dfh@maths.warwick.ac.uk
Mark J. Stather
Affiliation:
Mathematics Institute, University of Warwick, Coventry, CV4 7AL, United Kingdom, markstather@hotmail.com

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We describe an algorithm for computing a chief series, the soluble radical, and two other characteristic subgroups of a matrix group over a finite field, which is intended for matrix groups that are too large for the use of base and strong generating set methods. The algorithm has been implemented in Magma by the second author.

Type
Research Article
Copyright
Copyright © London Mathematical Society 2008

References

1.Aschbacher, M., ‘On the maximal subgroups of the finite classical groups’, Invent. Math. 76 (1984) 469514.CrossRefGoogle Scholar
2.Bäärnhielm, H., ‘Recognising the Ree groups in their natural representations’, Preprint.Google Scholar
3.Bäärnhielm, H., ‘Recognising the Suzuki groups in their natural representations’, J. Algebra 300 (2006) 171198.CrossRefGoogle Scholar
4.Babai, L. and Shalev, A., ‘Recognizing simplicity of black-box groups and the frequency of p-singular elements in affine groups’, Groups and Computation III, Ohio State Univ. Math. Res. Inst. Publ. 8 (de Gruyter, Berlin, 2001) 3962.CrossRefGoogle Scholar
5.Babai, László, ‘Local expansion of vertex-transitive graphs and random generation in finite groups’, Theory of Computing, Los Angeles, 1991 (Association for Computing Machinery, New York, 1991) pp. 164174.Google Scholar
6.Bratus, S. and Pak, I., ‘Fast constructive recognition of a black box group isomorphic to An or Sn using Goldbach's conjecture’, J. Symbolic Comput. 29 (2000) 3335.CrossRefGoogle Scholar
7.Cannon, J. J., Cox, B. C. and Holt, D. F., ‘Computing chief series, composition series and socles in large permutation groups’, J. Symbolic Comput. 24 (1997) 285301.CrossRefGoogle Scholar
8.Cannon, J. J. and Holt, D. F., ‘Automorphism group computation and isomorphism testing in finite groups’, J. Symbolic Comput. 35 (2003) 241267.CrossRefGoogle Scholar
9.Cannon, J. J. and Holt, D. F., ‘Computing maximal subgroups of finite groups’, J. Symbolic Comput. 37 (2004) 598609.CrossRefGoogle Scholar
10.Cannon, J. J. and Holt, D. F., ‘Computing conjugacy class representatives in permutation groups’, J. Algebra 300 (2006) 213222.CrossRefGoogle Scholar
11.Celler, F., Leedham-Green, C. R., Murray, S. H., Niemeyer, A. C. and O'Brien, E. A., ‘Generating random elements of a finite group’, Comm. Algebra 23 (1995) 49314948.CrossRefGoogle Scholar
12.Celler, Frank and Leedham-Green, C.R., ‘Calculating the order of an invertible matrix’, Groups and Computation II (DIMACS, 1995), Amer. Math. Soc. DIMACS Series 28 (American Mathematical Society, Providence, RI, 1997) 5560.CrossRefGoogle Scholar
13.Conder, M. D. E., Leedham-Green, C. R. and O'Brien, E. A., ‘Constructive recognition of PSL(2, q)’, Trans. Amer. Math. Soc. 358 (2006) 12031221.CrossRefGoogle Scholar
14.Glasby, S. P., Leedham-Green, C. R. and O'Brien, E. A., ‘Writing projective representations over subfields’, J. Algebra 295 (2006) 12031221.CrossRefGoogle Scholar
15.Gorenstein, D., Finite Groups (Harper & Row, New York, Evanston, London, 1968).Google Scholar
16.Holmes, P. E., Linton, S. A., O'Brien, E. A., Ryba, A. J. E. and Wilson, R. A., ‘Constructive membership testing in black-box groups’, Preprint.Google Scholar
17.Holt, Derek F., Eick, Bettina and O'Brien, E. A., Handbook of computational group theory (Chapman and Hall/CRC, London, 2005).CrossRefGoogle Scholar
18.Holt, Derek F., Leedham-Green, C. R., O'Brien, E. A. and Rees, Sarah, ‘Computing matrix group decompositions with respect to a normal subgroup’, J. Algebra 184 (1996) 818838.CrossRefGoogle Scholar
19.Holt, Derek F., Leedham-Green, C. R., O'Brien, E. A. and Rees, Sarah, ‘Testing matrix groups for primitivity’, J. Algebra 184 (1996) 795817.CrossRefGoogle Scholar
20.Holt, Derek F. and Rees, Sarah, ‘Testing modules for irreducibility’, J. Austral. Math. Soc. Ser. A 57 (1994) 116.CrossRefGoogle Scholar
21.Kantor, W. M. and Seress, À., ‘Black box classical groups’, Mem. Amer. Math. Soc. 149 (2001), no. 708.Google Scholar
22.Kleidman, P. and Liebeck, M., The Subgroup Structure of the Finite Classical Groups, London Mathematical Society Lecture Notes Series 129 (Cambridge University Press, Cambridge, 1990).CrossRefGoogle Scholar
23.Leedham-Green, C. R., ‘The computational matrix group project’, Groups and Computation III, Columbus, OH, 1999 (de Gruyter, Berlin, 2001) 229248.CrossRefGoogle Scholar
24.Leedham-Green, C. R. and O'Brien, E. A., ‘Recognising tensor products of matrix groups’, Internat. J. Algebra Comput. 7 (1997) 541559.CrossRefGoogle Scholar
25.Leedham-Green, C. R. and O'Brien, E. A., ‘Recognising tensor induced matrix groups’, J. Algebra 253 (2002) 1430.CrossRefGoogle Scholar
26.Liebeck, M. and Shalev, A., ‘The probability of generating a finite simple group’, Geom. Dedicata 56 (1995) 103113.CrossRefGoogle Scholar
27.Luebeck, F., Magaard, K. and O'Brien, E. A., ‘Constructive recognition of SL3 (q)’, Preprint.Google Scholar
28.Niemeyer, Alice C. and Praeger, Cheryl E., ‘A recognition algorithm for classical groups over finite fields’, Proc. London Math. Soc. (3) 77 (1998) 117169.CrossRefGoogle Scholar
29.O'Brien, E. A., ‘Towards effective algorithms for linear groups’, Finite Geometries, Groups and Computation, Colorado, 2004 (de Gruyter, Berlin, 2006) 163190.CrossRefGoogle Scholar
30.Seress, À., Permutation Group Algorithms (Cambridge University Press, Cambridge, 2003).CrossRefGoogle Scholar
31.Stather, Mark, ‘Algorithms for computing with finite matrix groups’, PhD thesis, University of Warwick, 2006.Google Scholar
32.Stather, M. J., ‘Sylow subgroups in matrix groups’, J. Algebra, to appear.Google Scholar
33.Taylor, D. E., The Geometry of the Classical Groups, Sigma Series in Pure Mathematics 9 (Heldermann, Berlin, 1992).Google Scholar