Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-25T22:57:37.610Z Has data issue: false hasContentIssue false

Bounds and algorithms for the $K$-Bessel function of imaginary order

Published online by Cambridge University Press:  10 April 2013

Andrew R. Booker
Affiliation:
Department of Mathematics, University of Bristol, University Walk, Bristol BS8 1TW, United Kingdom email andrew.booker@bristol.ac.uk
Andreas Strömbergsson
Affiliation:
Department of Mathematics, Box 480, Uppsala University, S-75106 Uppsala, Sweden email andreas.strombergsson@math.uu.se
Holger Then
Affiliation:
Department of Mathematics, University of Bristol, University Walk, Bristol BS8 1TW, United Kingdom email holger.then@bristol.ac.uk

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Using the paths of steepest descent, we prove precise bounds with numerical implied constants for the modified Bessel function ${K}_{ir} (x)$ of imaginary order and its first two derivatives with respect to the order. We also prove precise asymptotic bounds on more general (mixed) derivatives without working out numerical implied constants. Moreover, we present an absolutely and rapidly convergent series for the computation of ${K}_{ir} (x)$ and its derivatives, as well as a formula based on Fourier interpolation for computing with many values of $r$. Finally, we have implemented a subset of these features in a software library for fast and rigorous computation of ${K}_{ir} (x)$.

Type
Research Article
Copyright
© The Author(s) 2013 

References

M. Abramowitz and I. A. Stegun (eds), Handbook of mathematical functions with formulas, graphs, and mathematical tables, National Bureau of Standards Applied Mathematics Series 55 (U.S. Government Printing Office, Washington, DC, 1964).CrossRefGoogle Scholar
Aurich, R., Lustig, S., Steiner, F. and Then, H., ‘Hyperbolic universes with a horned topology and the cosmic microwave background anisotropy’, Classical Quantum Gravity 21 (2004) 49014925.CrossRefGoogle Scholar
Balogh, C. B., ‘Asymptotic expansions of the modified Bessel function of the third kind of imaginary order’, SIAM J. Appl. Math. 15 (1967) 13151323.CrossRefGoogle Scholar
Bolte, J., Steil, G. and Steiner, F., ‘Arithmetical chaos and violation of universality in energy level statistics’, Phys. Rev. Lett. 69 (1992) 21882191.CrossRefGoogle ScholarPubMed
Booker, A. R., ‘A test for identifying Fourier coefficients of automorphic forms and application to Kloosterman sums’, Exper. Math. 9 (2000) 571581.CrossRefGoogle Scholar
Booker, A. R. and Strömbergsson, A., ‘Effective computation of Maass cusp forms’, II, in preparation.Google Scholar
Booker, A. R., Strömbergsson, A. and Then, H., ‘Computational details regarding bounds on the K-Bessel function’, 2012, Maple file posted on http://www2.math.uu.se/~astrombe/kbessel/compdetails.html.Google Scholar
Booker, A. R., Strömbergsson, A. and Then, H., ‘Software library of some algorithms for rigorous computation of higher transcendental functions’, 2012, http://www.maths.bris.ac.uk/~mahlt/software/archt/.Google Scholar
Boris, J. P. and Oran, E. S., ‘Numerical evaluation of oscillatory integrals such as the modified Bessel function ${K}_{i\zeta } (x)$ ’, J. Comput. Phys. 17 (1975) 425433.CrossRefGoogle Scholar
Closas, Ll. and Fernández Rubio, J. A., ‘Cálculo rápido de las funciones de Bessel modificadas ${K}_{is} (X)$ e ${I}_{is} (X)$ y sus derivadas’, Stochastica 11 (1987) 5361.Google Scholar
Cuyt, A., Petersen, V. B., Verdonk, B., Waadeland, H. and Jones, W. B., Handbook of continued fractions for special functions (Springer, 2008).Google Scholar
Dunster, T. M., ‘Bessel functions of purely imaginary order, with an application to second-order linear differential equations having a large parameter’, SIAM J. Math. Anal. 21 (1990) 9951018.CrossRefGoogle Scholar
Ehrenmark, U. T., ‘The numerical inversion of two classes of Kontorovich–Lebedev transform by direct quadrature’, J. Comput. Appl. Math. 61 (1995) 4372.CrossRefGoogle Scholar
Erdélyi, A., Magnus, W., Oberhettinger, F. and Tricomi, F. G., Higher transcendental functions, vol. II (McGraw-Hill, 1953).Google Scholar
Gil, A., Segura, J. and Temme, N. M., ‘Evaluation of the modified Bessel function of the third kind of imaginary orders’, J. Comput. Phys. 175 (2002) 398411.CrossRefGoogle Scholar
Gil, A., Segura, J. and Temme, N. M., ‘Computation of the modified Bessel function of the third kind of imaginary orders: uniform Airy-type asymptotic expansion’, J. Comput. Appl. Math. 153 (2003) 225234.CrossRefGoogle Scholar
Grimmer, M., ‘Interval arithmetic in Maple with intpakX’, Proc. Appl. Math. Mech. 2 (2003) 442443.CrossRefGoogle Scholar
Hejhal, D. A., The Selberg trace formula for PSL(2, R), Lecture Notes in Mathematics 1001 (Springer, 1983).CrossRefGoogle Scholar
Hejhal, D. A., Unpublished notes on the computation of the $K$ -Bessel function, 1984.Google Scholar
Hejhal, D. A., ‘Eigenvalues of the Laplacian for Hecke triangle groups’, Mem. Amer. Math. Soc. 469 (1992) 1165.Google Scholar
Hejhal, D. A. and Rackner, B. N., ‘On the topography of Maass waveforms for PSL(2,Z)’, Exper. Math. 1 (1992) 275305.CrossRefGoogle Scholar
Iwaniec, H., Introduction to the spectral theory of automorphic forms (Rev. Mat. Iberoam., Madrid, 1995).Google Scholar
Kerimov, M. K. and Skorokhodov, S. L., ‘Calculation of modified Bessel functions in the complex domain’, Comput. Math. Math. Phys. 24 (1984) 1524.CrossRefGoogle Scholar
Kiyono, T. and Murashima, S., ‘A method of evaluation of the function ${K}_{is} (x)$ ’, Mem. Fac. Eng. Kyoto Univ. 35 (1973) 102127.Google Scholar
Lear, J. D. and Sturm, J. E., ‘An integral representation for the modified Bessel function of the third kind, computable for large, imaginary order’, Math. Comp. 21 (1967) 496498.CrossRefGoogle Scholar
Maaß, H., ‘Über eine neue Art von nichtanalytischen automorphen Funktionen und die Bestimmung Dirichletscher Reihen durch Funktionalgleichungen’, Math. Ann. 121 (1949) 141183.CrossRefGoogle Scholar
Revol, N. and Rouillier, F., ‘Motivations for an arbitrary precision interval arithmetic and the MPFI library’, Reliable Computing 11 (2005) 275290, http://perso.ens-lyon.fr/nathalie.revol/software.html.CrossRefGoogle Scholar
Olver, F. W. J. and Maximon, L. C., ‘Chapter 10 Bessel functions’, NIST Handbook of Mathematical Functions (eds Olver, F. W. J., Lozier, D. W., Boisvert, R. F. and Clark, C. W.; Cambridge University Press, New York, NY, 2010), http://dlmf.nist.gov/10.Google Scholar
Olver, F. W. J., ‘Error bounds for asymptotic expansions in turning-point problems’, SIAM J. Appl. Math. 12 (1964) 200214.CrossRefGoogle Scholar
Olver, F. W. J., Asymptotics and special functions (Academic Press, 1974).Google Scholar
The PARI Group, ‘PARI/GP, version 2.5.0’, Bordeaux, 2011, http://pari.math.u-bordeaux.fr/.Google Scholar
Shi, W. and Wong, R., ‘Hyperasymptotic expansions of the modified Bessel function of the third kind of purely imaginary order’, Asymptote. Anal. 63 (2009) 101123.Google Scholar
Sokolov, D. D. and Starobinskii, A. A., ‘Globally inhomogeneous ‘spliced’ universes’, Sov. Astron. 19 (1976) 629632.Google Scholar
Stens, R. L., ‘A unified approach to sampling theorems for derivatives and Hilbert transforms’, Signal Process. 5 (1983) 139151.CrossRefGoogle Scholar
Strömbergsson, A., ‘On the zeros of L-functions associated to Maass waveforms’, Int. Math. Res. Not. 1999 (1999) 839851.CrossRefGoogle Scholar
Szegö, G., Orthogonal polynomials, American Mathematical Society Colloquium Publications XXIII (American Mathematical Society, Providence, RI, 1939).Google Scholar
Temme, N. M., ‘Steepest descent paths for integrals defining the modified Bessel functions of imaginary order’, Methods Appl. Anal. 1 (1994) 1424.CrossRefGoogle Scholar
Then, H., ‘Maass cusp forms for large eigenvalues’, Math. Comp. 74 (2005) 363381.CrossRefGoogle Scholar
Then, H., ‘Arithmetic quantum chaos of Maass waveforms’, Frontiers in number theory, physics, and geometry I (eds Cartier, P., Julia, B., Moussa, P. and Vanhove, P.; Springer, 2006), 183212.Google Scholar
Then, H., ‘Large sets of consecutive Maass forms and fluctuations in the Weyl remainder’, Preprint, 2012, arXiv:1212.3149.Google Scholar
Thompson, I. J. and Barnett, A. R., ‘Coulomb and Bessel functions of complex arguments and order’, J. Comput. Phys. 64 (1986) 490509.CrossRefGoogle Scholar
Watson, G. N., A treatise on the theory of bessel functions (Cambridge University Press, 1944).Google Scholar
Zhao, P., ‘Quantum variance of Maass–Hecke cusp forms’, Commun. Math. Phys. 297 (2010) 475514.CrossRefGoogle Scholar