Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-25T23:06:02.608Z Has data issue: false hasContentIssue false

The Alperin Weight Conjecture and Dade's Conjecture for the Simple Group Fi′24

Published online by Cambridge University Press:  01 February 2010

Jianbei An
Affiliation:
Department of Mathematics, University of Auckland, Auckland, New Zealand, an@math.auckland.ac.nz
John J. Cannon
Affiliation:
School of Mathematics and Statistics, University of Sydney, NSW 2006, Australia, john@maths.usyd.edu.au
E. A. O'Brien
Affiliation:
Department of Mathematics, University of Auckland, Auckland, New Zealand, obrien@math.auckland.ac.nz
W. R. Unger
Affiliation:
School of Mathematics and Statistics, University of Sydney, NSW 2006, Australia, billu@maths.usyd.edu.au

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We classify the radical p-subgroups and chains of the Fischer simple group Fi′24 and then verify the Alperin weight conjecture and the Uno reductive conjecture for Fi′24.

Type
Research Article
Copyright
Copyright © London Mathematical Society 2008

References

1.Alperin, J. L., ‘Weights for finite groups’, The Arcata Conference on Representations of Finite Groups, Proc. Sympos. Pure Math. 47 (1987) 369379.CrossRefGoogle Scholar
2.An, J. and Eaton, C. W., ‘The p-local rank of a block’, J. Group Theory 3 (2000) 369380.CrossRefGoogle Scholar
3.An, J. and Eaton, C. W., ‘Modular representation theory of blocks with trivial intersection defect groups’, Algebra Represent. Theory 8 (2005) 427448.CrossRefGoogle Scholar
4.An, J. and O'Brien, E. A., ‘A local strategy to decide the Alperin and Dade conjectures’, J. Algebra 206 (1998) 183207.CrossRefGoogle Scholar
5.An, J. and O'Brien, E. A., ‘The Alperin and Dade conjectures for the simple Fischer group Fi23, Internat. J. Algebra Comput. 9 (1999) 621670.CrossRefGoogle Scholar
6.An, J. and Wilson, R. A., ‘The Alperin and Uno conjectures for the Baby Monster IB, p odd’, LMS J. Comput. Math. 7 (2004) 120166.CrossRefGoogle Scholar
7.Bosma, W., Cannon, J. and Playoust, C., ‘The MAGMA algebra system I: The user language’, J. Symbolic Comput. 24 (1997) 235265.CrossRefGoogle Scholar
8.Burgoyne, N. and Williamson, C., ‘On a theorem of Borel and Tits for finite Chevalley groups’, Arch. Math. 27 (1976) 489491.CrossRefGoogle Scholar
9.Conway, J. H., Curtis, R. T., Norton, S. P., Parker, R. A. and Wilson, R. A., Atlas of Finite Groups (Clarendon Press, Oxford, 1985).Google Scholar
10.Celler, F., Leedham-Green, C. R., Murray, S. H., Niemeyer, A. C. and O'Brien, E. A., ‘Generating random elements of a finite group’, Comm. Algebra 23 (1995) 49314948.CrossRefGoogle Scholar
11.Dade, E. C., ‘Counting characters in blocks.I’, Invent. Math. 109 (1992) 187210.CrossRefGoogle Scholar
12.Dade, E. C., ‘Counting characters in blocks. II.9.’, Representation theory of finite groups (Columbus, OH, 1995), Ohio State Univ. Math. Res. Inst. Publ. 6 (de Gruyter, Berlin, 1997) 4559.CrossRefGoogle Scholar
13.The GAP Group, GAP – Groups, Algorithms, and Programming, Version 4.4.9, 2006, http://www.gap-system.org.Google Scholar
14.Hiss, G. and Lux, K., Brauer Trees of Sporadic Groups (Oxford Science Publications, 1989).Google Scholar
15.Isaacs, I. M. and Navarro, G., ‘New refinements of the McKay conjecture for arbitrary finite groups’, Ann of Math. (2) 156 (2002) 333344.CrossRefGoogle Scholar
16.Nagao, H. and Tsushima, Y., Representations of Finite Groups (Academic Press, Boston, MA, 1989).Google Scholar
17.Olsson, J. B. and Uno, K., ‘Dade's conjecture for general linear groups in the defining characteristic’, Proc. London Math. Soc. (3) 72 (1996) 359384.CrossRefGoogle Scholar
18.Schneider, G. J. A., ‘Dixon's character table algorithm revisited’, J. Symbolic Comput. 9 (1990) 601606.CrossRefGoogle Scholar
19.Unger, W. R., ‘Computing the character table of a finite group’, J. Symbolic Comput. 41 (2006) 847862.CrossRefGoogle Scholar
20.Uno, K., ‘Dade's conjecture for tame blocks’, Osaka J. Math. 31 (1994) 747772.Google Scholar
21.Uno, K., ‘Conjectures on character degrees for the simple Thompson group’, Osaka J. Math. 41 (2004) no. 1, 1136.Google Scholar
22.Wilson, R. A., ‘The local subgroups of the Fischer groups’, J. London Math. Soc. (2) 36 (1987) 7794.CrossRefGoogle Scholar
23.Wilson, R. A., ‘Standard generators for sporadic simple groups’, J. Algebra 184 (1996) 505515.CrossRefGoogle Scholar
24.Wilson, R. A. et al. , ATLAS of Finite Group Representations, http://brauer.maths.qmul.ac.uk/Atlas.Google Scholar
Supplementary material: PDF

JCM 11 An et al Appendix A

An et al Appendix A

Download JCM 11 An et al Appendix A(PDF)
PDF 305.8 KB
Supplementary material: PDF

JCM 11 An et al Appendix B

An et al Appendix B

Download JCM 11 An et al Appendix B(PDF)
PDF 80.8 KB