Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-26T21:31:29.796Z Has data issue: false hasContentIssue false

Mass spectrometry as a versatile ancillary technique for the rapid in situ identification of lichen metabolites directly from TLC plates

Published online by Cambridge University Press:  19 September 2017

Pierre LE POGAM
Affiliation:
Institute of Chemistry of Rennes, ISCR, UMR CNRS 6226, University of Rennes 1, 2 Av. du Prof. Léon Bernard, Rennes Cedex 35043, France. Email: pierre.lepogam-alluard@univ-rennes1.fr Institute of Electronics and Telecommunications of Rennes, IETR, UMR CNRS 6164, University of Rennes 1, 263 Av. du Général Leclerc, Rennes Cedex 35042, France
Aline PILLOT
Affiliation:
Institute of Chemistry of Rennes, ISCR, UMR CNRS 6226, University of Rennes 1, 2 Av. du Prof. Léon Bernard, Rennes Cedex 35043, France. Email: pierre.lepogam-alluard@univ-rennes1.fr UMR CNRS 6286, University of Nantes, 2 Rue de la Houssinière, Nantes Cedex 44322, France
Françoise LOHEZIC-LE DEVEHAT
Affiliation:
Institute of Chemistry of Rennes, ISCR, UMR CNRS 6226, University of Rennes 1, 2 Av. du Prof. Léon Bernard, Rennes Cedex 35043, France. Email: pierre.lepogam-alluard@univ-rennes1.fr
Anne-Cécile LE LAMER
Affiliation:
Institute of Chemistry of Rennes, ISCR, UMR CNRS 6226, University of Rennes 1, 2 Av. du Prof. Léon Bernard, Rennes Cedex 35043, France. Email: pierre.lepogam-alluard@univ-rennes1.fr University Paul Sabatier Toulouse 3, 118 Route de Narbonne, 31062 Toulouse, France
Béatrice LEGOUIN
Affiliation:
Institute of Chemistry of Rennes, ISCR, UMR CNRS 6226, University of Rennes 1, 2 Av. du Prof. Léon Bernard, Rennes Cedex 35043, France. Email: pierre.lepogam-alluard@univ-rennes1.fr
Alice GADEA
Affiliation:
Institute of Chemistry of Rennes, ISCR, UMR CNRS 6226, University of Rennes 1, 2 Av. du Prof. Léon Bernard, Rennes Cedex 35043, France. Email: pierre.lepogam-alluard@univ-rennes1.fr UMR CNRS 6553, ECOBIO, University of Rennes 1, 263 Av. du Général Leclerc, Rennes Cedex 35042, France
Aurélie SAUVAGER
Affiliation:
Institute of Chemistry of Rennes, ISCR, UMR CNRS 6226, University of Rennes 1, 2 Av. du Prof. Léon Bernard, Rennes Cedex 35043, France. Email: pierre.lepogam-alluard@univ-rennes1.fr
Damien ERTZ
Affiliation:
Botanic Garden Meise, Department Bryophytes-Thallophytes (BT), Nieuwelaan 38, B-1860 Meise, Belgium
Joël BOUSTIE
Affiliation:
Institute of Chemistry of Rennes, ISCR, UMR CNRS 6226, University of Rennes 1, 2 Av. du Prof. Léon Bernard, Rennes Cedex 35043, France. Email: pierre.lepogam-alluard@univ-rennes1.fr

Abstract

Thin-layer chromatography (TLC) still enjoys widespread popularity among lichenologists as one of the fastest and simplest analytical strategies, today remaining the primary method of assessing the secondary product content of lichens. The pitfalls associated with this approach are well known as TLC leads to characterizing compounds by comparison with standards rather than properly identifying them, which might lead to erroneous assignments, accounting for the long-held interest in hyphenating TLC with dedicated identification tools. As such, commercially available TLC/Mass Spectrometry (MS) interfaces can be easily connected to any brand of mass spectrometer without adjustments. The spots of interest are extracted from the TLC plate to retrieve mass spectrometric signals within one minute, thereby ensuring accurate identification of the chromatographed substances. The results of this hyphenated strategy for lichens are presented here by 1) describing the TLC migration and direct MS analysis of single lichen metabolites of various structural classes, 2) highlighting it through the chemical profiling of crude acetone extracts of a set of lichens of known chemical composition, and finally 3) applying it to a lichen of unknown profile, Usnea trachycarpa.

Type
Articles
Copyright
© British Lichen Society, 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adhami, H.-R., Scherer, U., Kaehlig, H., Hettich, T., Schlotterbeck, G., Reich, E. & Krenn, L. (2013) Combination of bioautography with HPTLC-MS/NMR: a fast identification of acetylcholinesterase inhibitors from Galbanum . Phytochemical Analysis 24: 395400.CrossRefGoogle ScholarPubMed
Arup, U., Ekman, S., Lindblom, L. & Mattsson, J.-E. (1993) High performance thin layer chromatography (HPTLC), an improved technique for screening lichen substances. Lichenologist 25: 6171.Google Scholar
Bodo, B. & Molho, D. (1980) Structure des acides isomuronique et neuropogolique, nouveaux acides aliphatiques du lichen Neuropogon trachycarpus . Phytochemistry 19: 11171120.Google Scholar
Cheng, S.-C., Huang, M.-Z. & Shiea, J. (2011) Thin layer chromatography/mass spectrometry. Journal of Chromatography A 1218: 27002711.Google Scholar
Culberson, C. F. (1972) Improved conditions and new data for identification of lichen products by a standardized thin-layer chromatographic method. Journal of Chromatography A 72: 113125.CrossRefGoogle ScholarPubMed
Culberson, C. F. & Culberson, W. L. (1966) The identification of imbricaric acid and a new imbricaric acid-containing lichen species. Bryologist 69: 192202.Google Scholar
Culberson, C. F. & Johnson, A. (1976) A standardized two-dimensional thin-layer chromatographic method for lichen products. Journal of Chromatography A 128: 253259.CrossRefGoogle Scholar
Culberson, C. F. & Kristinsson, H.-D. (1970) A standardized method for the identification of lichen products. Journal of Chromatography A 46: 8593.CrossRefGoogle Scholar
Culberson, C. F., Culberson, W. L. & Johnson, A. (1981) A standardized TLC analysis of β-orcinol depsidones. Bryologist 84: 1629.Google Scholar
Demarque, D. P., Crotti, A. E. M., Vessecchi, R., Lopes, J. L. C. & Lopes, N. P. (2016) Fragmentation reactions using electrospray ionization mass spectrometry: an important tool for the structural elucidation and characterization of synthetic and natural products. Natural Products Reports 33: 432455.Google Scholar
Elix, J. A. (2014) A Catalogue of Standardized Thin Layer Chromatographic Data and Biosynthetic Relationships for Lichen Substances, 3rd edition. Canberra: published by the author.Google Scholar
Elix, J. A., Wirtz, N. & Lumbsch, H. T. (2007) Studies on the chemistry of some Usnea species of the Neuropogon group (Lecanorales, Ascomycota). Nova Hedwigia 85: 491501.Google Scholar
Ghogomu, R. T. & Bodo, B. (1982) Structural elucidation of 13-acetoxylichesterinic and 13-acetoxyprotolichesterinic acids, two aliphatic lichen metabolites from Neuropogon trachycarpus . Phytochemistry 21: 23552358.Google Scholar
Holzmann, G. & Leuckert, C. (1990) Applications of negative fast atom bombardment and MS/MS to screening of lichen compounds. Phytochemistry 29: 22772283.CrossRefGoogle Scholar
Horhant, D., Le Lamer, A.-C., Boustie, J., Uriac, P. & Gouault, N. (2007) Separation of a mixture of paraconic acids from Cetraria islandica (L.) Ach. employing a fluorous tag—catch and release strategy. Tetrahedron Letters 48: 60316033.Google Scholar
Huneck, S. & Yoshimura, I. (1996) Identification of Lichen Substances. Berlin, Heidelberg: Springer-Verlag.Google Scholar
Huneck, S., Djerassi, C., Becher, D., Barber, M., Von Ardenne, M., Steinfelder, K. & Tümmler, R. (1968) Flechteninhaltsstoffe—XXXI: Massenspektrometrie und ihre anwendung auf strukturelle und streochemische probleme—CXXIII Massenspektrometrie von depsiden, depsidonen, depsonen, dibenzofuranen und diphenylbutadienen mit positiven und negativen ionen. Tetrahedron 24: 27072755.CrossRefGoogle Scholar
Kanu, A. B., Dwivedi, P., Tam, M., Matz, L. & Hill, H. H. Jr. (2008) Ion mobility-mass spectrometry. Journal of Mass Spectrometry 43: 122.Google Scholar
Kuhl, C., Tautenhahn, R., Böttcher, C., Larson, T. R. & Neumann, S. (2011) CAMERA: an integrated strategy for compound spectra extraction and annotation of liquid chromatography/mass spectrometry data sets. Analytical Chemistry 84: 283289.CrossRefGoogle ScholarPubMed
Le Pogam, P. & Boustie, J. (2016) Xanthones of lichen source: a 2016 update. Molecules 21: 294.Google Scholar
Le Pogam, P., Herbette, G. & Boustie, J. (2015 a) Analysis of lichen metabolites, a variety of approaches. In Recent Advances in Lichenology: Modern Methods and Approaches in Biomonitoring and Bioprospection (D. K. Upreti, P. K. Divakar, V. Shukla & R. Bajpai, eds): 229261. New Delhi: Springer India.Google Scholar
Le Pogam, P., Schinkovitz, A., Legouin, B., Le Lamer, A.-C., Boustie, J. & Richomme, P. (2015 b) Matrix-free UV-laser desorption ionization mass spectrometry as a versatile approach for accelerating dereplication studies on lichens. Analytical Chemistry 87: 1042110428.Google Scholar
Le Pogam, P., Le Lamer, A.-C., Legouin, B., Boustie, J. & Rondeau, D. (2016) In situ DART-MS as a versatile and rapid dereplication tool in lichenology: chemical fingerprinting of Ophioparma ventosa . Phytochemical Analysis 27: 354363.Google Scholar
Leuckert, C. & Knoph, J. G. (1992) European taxa of saxicolous Lecidella containing chloroxanthones: identification of patterns using thin layer chromatography. Lichenologist 24: 383397.Google Scholar
Mann, M. (1990) Electrospray: its potential and limitations as an ionization method for biomolecules. Journal of Mass Spectrometry 25: 575587.Google Scholar
McLafferty, F. W. (1981) Tandem mass spectrometry. Science 214: 280287.CrossRefGoogle ScholarPubMed
Orange, A., James, P. W. & White, F. J. (2010) Microchemical Methods for the Identification of Lichens, 2nd edition. London: British Lichen Society.Google Scholar
Piattelli, M. & de Nicola, M. G. (1968) Anthraquinone pigments from Xanthoria parietina (L.). Phytochemistry 7: 11831187.Google Scholar
Rambold, G., Elix, J. A., Heindl-Tenhunen, B., Köhler, T., Nash, T. H. III, Neubacher, D., Reichert, W., Zedda, L. & Triebel, D. (2014) LIAS light – towards the ten thousand species milestone. MycoKeys 8: 1116.Google Scholar
Rathahao-Paris, E., Alves, S., Junot, C. & Tabet, J.-C. (2016) High resolution mass spectrometry for structural identification of metabolites in metabolomics. Metabolomics 12: 10.Google Scholar
Schmidt, J. (2016) Negative ion electrospray high-resolution tandem mass spectrometry of polyphenols. Journal of Mass Spectrometry 51: 3343.Google Scholar
Shariatgorji, M., Spacil, Z., Maddalo, G., Cardenas, L. B. & Ilag, L. L. (2009) Matrix-free thin-layer chromatography/laser desorption ionization mass spectrometry for facile separation and identification of medicinal alkaloids. Rapid Communications in Mass Spectrometry 23: 36553660.Google Scholar
Sherma, J. (2008) Planar chromatography. Analytical chemistry 80: 42534267.CrossRefGoogle ScholarPubMed
Sherma, J. (2010) Planar chromatography. Analytical chemistry 82: 48954910.Google Scholar
Siouffi, A.-M. (2005) From paper to planar: 60 years of thin layer chromatography. Separation and Purification Reviews 34: 155180.Google Scholar
Theodoridis, G. A., Gika, H. G., Want, E. J. & Wilson, I. D. (2012) Liquid chromatography-mass spectrometry based global metabolite profiling: a review. Analytica Chimica Acta 711: 716.Google Scholar
Walker, F. J. (1985) The lichen genus Usnea subgenus Neuropogon . Bulletin of the British Museum (Natural History), Botany Series 13: 1130.Google Scholar
Supplementary material: File

Le Pogam et al supplementary material

Le Pogam et al supplementary material 1

Download Le Pogam et al supplementary material(File)
File 586 KB