Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-25T23:34:20.710Z Has data issue: false hasContentIssue false

Exploring patterns of commonness and rarity in lichens: a case study from Italy (Southern Europe)

Published online by Cambridge University Press:  08 May 2018

Pier Luigi NIMIS
Affiliation:
Department of Life Sciences, University of Trieste, Via Giorgieri 10, I 34127 Trieste, Italy. Email: nimis@units.it
Stefano MARTELLOS
Affiliation:
Department of Life Sciences, University of Trieste, Via Giorgieri 10, I 34127 Trieste, Italy. Email: nimis@units.it
Daniel SPITALE
Affiliation:
Museum of Natural Sciences of South Tyrol, Via Bottai 1, I-39100 Bolzano/Bozen, Italy
Juri NASCIMBENE
Affiliation:
Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Irnerio 42, I-40126 Bologna, Italy

Abstract

This paper, based on data from the latest checklist of Italy, analyzes the distribution patterns of rare and common lichen species within biogeographically homogeneous versus heterogeneous areas of Italy, and the relationships with some main drivers of rarity and commonness. The following data were used: 1) commonness-rarity values of 2565 species in nine ecoregions; 2) frequency of 353 nationally rare and 387 nationally common species in 21 administrative regions. The following functional and ecological traits were considered: growth form, photobiont(s), type of reproduction, substrata, bioclimatic range, ecological indicator values for aridity and eutrophication, and poleophoby. Within each ecoregion, rare species by far outweigh common species but about one third of these are common in other ecoregions. At the level of regional floras, rarity is significantly associated with epiphytic substrata, non-trebouxioid photobionts and high air humidity, while commonness is associated with saxicolous substrata, trebouxioid photobionts and eutrophication. Rarity seems to mainly depend on two factors, bioclimate (many rare species are outside the limit of their bioclimatic optima) and reduced availability of suitable habitats (e.g. old-growth forests), while commonness is mainly related to disturbance (eutrophication, creation of drier habitats). Most of the nationally rare lichens belong to an oceanic-suboceanic element with tropical affinities or to a small set of continental species with their optima in the dry steppe biome, which suggests that many rare species can persist in microrefugia, that is sites with microclimates that support small populations of species beyond the boundaries of the climatic limits of their main distributions.

Type
Articles
Copyright
© British Lichen Society, 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aizen, M. A. & Patterson, W. A. (1990) Acorn size and geographical range in the North American oaks (Quercus L.). Journal of Biogeography 17: 327332.CrossRefGoogle Scholar
Allen, J. L. & Lendemer, J. C. (2016) Climate change impacts on endemic, high-elevation lichens in a biodiversity hotspot. Biodiversity and Conservation 25: 555568.CrossRefGoogle Scholar
Aptroot, A. & van Herk, C. M. (2007) Further evidence of the effects of global warming on lichens, particularly those with Trentepohlia phycobionts. Environmental Pollution 146: 293298.CrossRefGoogle ScholarPubMed
Aptroot, A., van Herk, C. M., Sparrius, L. B. & Spier, J. R. (2004) Checklist van de Nederlandse Korstmossen en korstmosparasieten. Buxbaumiella 69: 1755.Google Scholar
Arellano, G., Loza, M. I., Tello, J. S. & Macía, M. J. (2015) Commonness and rarity determinants of woody plants in different types of tropical forests. Biodiversity and Conservation 24: 10731087.CrossRefGoogle Scholar
Asplund, J. & Wardle, D. A. (2017) How lichens impact on terrestrial community and ecosystem properties. Biological Reviews 92: 17201738.CrossRefGoogle ScholarPubMed
Bielczyk, U., Cieslinski, S. & Faltynowicz, W. (eds) (2002) Atlas Rozmieszczenia Geograficznego Porostów w Polsce. 3. Kraków: Polish Academy of Sciences.Google Scholar
Brown, J. H. (1984) On the relationship between abundance and distribution of species. American Naturalist 124: 255279.CrossRefGoogle Scholar
Davidar, P., Rajagopal, B., Arjunan, M. & Puyravaud, J. P. (2008) The relationship between local abundance and distribution of rain forest trees across environmental gradients in India. Biotropica 40: 700706.CrossRefGoogle Scholar
Diaz, S. & Cabido, M. (2001) Vive la différence: plant functional diversity matters to ecosystem processes. Trends in Ecology and Evolution 16: 646655.CrossRefGoogle Scholar
Dietrich, M., Stofer, S., Scheidegger, C., Frei, M., Groner, U., Keller, C., Roth, I. & Steinmeier, C. (2000) Data sampling of rare and common species for compiling a Red List of epiphytic lichens. Forest, Snow and Landscape Research 75: 369380.Google Scholar
Dobrowski, S. (2010) A climatic basis for microrefugia: the influence of terrain on climate. Global Change Biology 17: 10221035.CrossRefGoogle Scholar
Edwards, T. C. Jr, Cutler, D. R., Geiser, L., Alegria, J. & McKenzie, D. (2004) Assessing rarity of species with low detectability: lichens in Pacific Northwest forests. Ecological Applications 14: 414424.CrossRefGoogle Scholar
Edwards, T. C. Jr, Cutler, D. R., Zimmermann, N. E., Geiser, L. & Alegria, J. (2005) Model-based stratifications for enhancing the detection of rare ecological events. Ecology 86: 10811090.CrossRefGoogle Scholar
Elbert, W., Weber, B., Burrows, S., Steinkamp, J., Büdel, B., Andreae, M. O. & Pöschl, U. (2012) Contribution of cryptogamic covers to the global cycles of carbon and nitrogen. Nature Geoscience 5: 459462.CrossRefGoogle Scholar
Gaston, K. J. (1994) Rarity. London: Chapman & Hall.CrossRefGoogle Scholar
Gaston, K. J. (2010) Valuing common species. Science 327: 154155.CrossRefGoogle ScholarPubMed
Gaston, K. J. (2011) Common ecology. BioScience 61: 354362.CrossRefGoogle Scholar
Gaston, K. J. (2012) The importance of being rare. Nature 487: 4647.CrossRefGoogle ScholarPubMed
Gentry, A. H. (1991) The distribution and evolution of climbing plants. In The Biology of Vines (F. E. Putz & H. A. Mooney, eds): 349. Cambridge: Cambridge University Press.Google Scholar
Gilbert, O. L. (1990) The lichen flora of urban wasteland. Lichenologist 22: 87101.CrossRefGoogle Scholar
Hanski, I. (1982) Dynamics of regional distribution: the core and satellite species hypothesis. Oikos 38: 210221.CrossRefGoogle Scholar
Ihlen, P. G., Gjerde, I. & Saetersdal, M. (2001) Structural indicators of richness and rarity of epiphytic lichens on Corylus avellana in two different forest types within a nature reserve in south-western Norway. Lichenologist 33: 215229.CrossRefGoogle Scholar
Jahns, H. M. & Ott, S. (1997) Life strategies in lichens – some general considerations. Bibliotheca Lichenologica 67: 4967.Google Scholar
Keim, J. L., Dewitt, P. D., Fitzpatrick, J. J. & Jenni, N. S. (2017) Estimating plant abundance using inflated beta distributions: applied learnings from a lichen-caribou ecosystem. Ecology and Evolution 7: 486493.CrossRefGoogle ScholarPubMed
Kelly, C., Woodward, F. & Crawley, M. (1996) Ecological correlates of plant range size: taxonomies and phylogenies in the study of plant commonness and rarity in Great Britain. Philosophical Transactions: Biological Sciences 351: 12611269.Google Scholar
Kristiansen, T., Svenning, J.-C., Grandez, C., Salo, J. & Balslev, H. (2009) Commonness of Amazonian palm (Arecaceae) species: cross-scale links and potential determinants. Acta Oecologica 35: 554562.CrossRefGoogle Scholar
Kunin, W. E. & Gaston, K. J. (1997) The Biology of Rarity: Causes and Consequences of Rare-Common Differences. London: Chapman & Hall.CrossRefGoogle Scholar
Kunin, W. E. & Shmida, A. (1997) Plant reproductive traits as a function of local, regional, and global abundance. Conservation Biology 11: 183192.CrossRefGoogle Scholar
Legendre, P. & Legendre, L. (1998) Numerical Ecology, 2nd ed. Amsterdam: Elsevier.Google Scholar
Letcher, S. G. & Chazdon, R. L. (2012) Life history traits of lianas during tropical forest succession. Biotropica 44: 720727.CrossRefGoogle Scholar
Marini, L., Nascimbene, J. & Nimis, P. L. (2011) Large-scale patterns of epiphytic lichen species richness: photobiont dependent response to climate and forest structure. Science of the Total Environment 409: 43814386.CrossRefGoogle ScholarPubMed
Martellos, S. (2012) From a textual checklist to an information system: the case study of ITALIC, the Information System on Italian Lichens. Plant Biosystems 146: 764770.CrossRefGoogle Scholar
Matos, P., Pinho, P., Aragón, G., Martínez, I., Nunes, A., Soares, A. M. V. M. & Branquinho, C. (2015) Lichen traits responding to aridity. Journal of Ecology 103: 451458.CrossRefGoogle Scholar
McCune, B., Rosentreter, R. & Debolt, A. (1997) Biogeography of rare lichens from the coast of Oregon. In Conservation and Management of Native Plants and Fungi (T. N. Kaye, A. Liston, R. M. Love, D. L. Luoma, R. J. Meinke & M. V. Wilson, eds): 234241. Corvallis, Oregon: Native Plant Society of Oregon.Google Scholar
Moles, A. T. & Westoby, M. (2004) Seedling survival and seed size: a synthesis of the literature. Journal of Ecology 92: 372383.CrossRefGoogle Scholar
Murray, B. R. & Westoby, M. (2000) Properties of species in the tail of rank-abundance curves: the potential for increase in abundance. Evolutionary Ecology Research 2: 583592.Google Scholar
Murray, B. R., Thrall, P. H., Gill, A. M. & Nicotra, A. B. (2002) How plant life-history and ecological traits relate to species rarity and commonness at varying spatial scales. Australian Ecology 27: 291310.CrossRefGoogle Scholar
Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B. & Kent, J. (2000) Biodiversity hotspots for conservation priorities. Nature 403: 853858.CrossRefGoogle ScholarPubMed
Nascimbene, J., Martellos, S. & Nimis, P. L. (2006) Epiphytic lichens of tree-line forests in the central-eastern Italian Alps and their importance for conservation. Lichenologist 38: 373382.CrossRefGoogle Scholar
Nascimbene, J., Nimis, P. L. & Marini, L. (2007) Testing indicators of epiphytic lichen diversity: a case study in N Italy. Biodiversity and Conservation 16: 33773383.CrossRefGoogle Scholar
Nascimbene, J., Nimis, P. L. & Ravera, S. (2013) Evaluating the conservation status of epiphytic lichens of Italy: a red list. Plant Biosystems 147: 898904.CrossRefGoogle Scholar
Nascimbene, J., Lazzaro, L. & Benesperi, R. (2015) Patterns of beta-diversity and similarity reveal biotic homogenization of epiphytic lichen communities associated with the spread of black locust forests. Fungal Ecology 14: 17.CrossRefGoogle Scholar
Nathan, R. & Muller-Landau, H. (2000) Spatial patterns of seed dispersal, their determinants and consequences for recruitment. Trends in Ecology and Evolution 15: 278285.CrossRefGoogle ScholarPubMed
Nimis, P. L. (2016) The Lichens of Italy. A Second Annotated Catalogue. Trieste: EUT.Google Scholar
Nimis, P. L. & Martellos, S. (2001) Testing the predictivity of ecological indicator values. A comparison of real and ‘virtual’ relevés of lichen vegetation. Plant Ecology 157: 165172.CrossRefGoogle Scholar
Nimis, P. L. & Martellos, S. (2003) On the ecology of sorediate lichens in Italy. Bibliotheca Lichenologica 86: 393406.Google Scholar
Nimis, P. L. & Martellos, S. (2017) ITALICThe Information System on Italian Lichens. Version 5.0. Department of Life Sciences, University of Trieste. Available at: http://dryades.units.it/italic.Google Scholar
Nimis, P. L. & Tretiach, M. (1995) The lichens of Italy – a phytoclimatical outline. Cryptogamic Botany 5: 199208.Google Scholar
Nimis, P. L. & Tretiach, M. (1999) Itinera Adriatica – lichens from the eastern part of the Italian Peninsula. Studia Geobotanica 18: 51106.Google Scholar
Nimis, P. L. & Tretiach, M. (2004) Delimiting Tyrrhenian Italy: a lichen foray in the SW part of the peninsula. Bibliotheca Lichenologica 88: 465478.Google Scholar
Oksanen, J., Guillaume Blanchet, F., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P.R., O’Hara, R.B., Simpson, G.L., Solymos, P., et al. (2017) vegan: Community Ecology Package. R package version 2.4-2. Available at: https://CRAN.R-project.org/package=vegan.Google Scholar
Pitman, N. C. A., Terborgh, J. W., Silman, M. R., Nuñez, P. V., Neill, D. A., Cerón, C. E., Palacios, W. A. & Aulestia, M. (2001) Dominance and distribution of tree species in upper Amazonian terra firme forests. Ecology 82: 21012117.CrossRefGoogle Scholar
Poelt, J. (1994) Different species types in lichenized ascomycetes. In Ascomycete Systematics. Problems and Perspectives in the Nineties (D. L. Hawksworth, ed.): 273278. New York: Plenum Press.CrossRefGoogle Scholar
Preston, F. W. (1948) The commonness, and rarity, of species. Ecology 29: 254283.CrossRefGoogle Scholar
Qian, H. & Ricklefs, R. E. (2006) The role of exotic species in homogenizing the North American flora. Ecology Letters 9: 12931298.CrossRefGoogle ScholarPubMed
R Development Core Team (2017) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna.Google Scholar
Rabinowitz, D. (1981) Seven forms of rarity. In The Biological Aspects of Rare Plant Conservation (H. Synge, ed.): 205217. New York: Wiley.Google Scholar
Rabinowitz, D., Cairns, S. & Dillon, T. (1986) Seven forms of rarity and their frequency in the flora of the British Isles. In Conservation Biology: The Science of Scarcity and Diversity (M. E. Soulé, ed.): 182204. Sunderland, Massachusetts: Sinauer Associates.Google Scholar
Rodriguez, J. M., Renison, D., Filippini, E. & Estrabou, C. (2017) Small shifts in microsite occupation could mitigate climate change consequences for mountain top endemics: a test analyzing saxicolous lichen distribution patterns. Biodiversity and Conservation 26: 11991215.CrossRefGoogle Scholar
Rogers, R. W. (1990) Ecological strategies of lichens. Lichenologist 22: 149162.CrossRefGoogle Scholar
Roque, F. O., Zampiva, N. K., Valente-Neto, F., Menezes, J. F. S. & Hamada, N. (2016) Deconstructing richness patterns by commonness and rarity reveals bioclimatic and spatial effects in black fly metacommunities. Freshwater Biology 61: 923932.CrossRefGoogle Scholar
Rull, V. (2009) Microrefugia. Journal of Biogeography 36: 481484.CrossRefGoogle Scholar
Ruokolainen, K. & Vormisto, J. (2000) The most widespread Amazonian palms tend to be tall and habitat generalists. Basic and Applied Ecology 1: 97108.CrossRefGoogle Scholar
Seaward, M. R. D. (1988) Progress in the study of the lichen flora of the British Isles. Botanical Journal of the Linnean Society 96: 8195.CrossRefGoogle Scholar
Seaward, M. R. D. (1995) Lichen Atlas of the British Isles, Fascicles 1–6. London: British Lichen Society.Google Scholar
Sutherland, W. J., Freckleton, R. P., Godfray, H. C. J., Beissinger, S. R., Benton, T., Cameron, D. D., Carmel, Y., Coomes, D. A., Coulson, T., Emmerson, M. C. et al. (2013) Identification of 100 fundamental ecological questions. Journal of Ecology 101: 5867.CrossRefGoogle Scholar
Walck, J. L., Baskin, J. M. & Baskin, C. C. (1999) Relative competitive abilities and growth characteristics of a narrowly endemic and a geographically widespread Solidago species (Asteraceae). American Journal of Botany 86: 820828.CrossRefGoogle Scholar
Webb, C. T., Hoeting, J. A., Ames, G. M., Pyne, M. I. & Poff, N. L. (2010) A structured and dynamic framework to advance traits-based theory and prediction in ecology. Ecology Letters 13: 267283.CrossRefGoogle ScholarPubMed
Wirth, V. (2001) Zeigerwerte von Flechten. Scripta Geobotanica 18: 221243.Google Scholar
Wirth, V. (2010) Ökologische Zeigerwerte von Flechten – erweiterte und aktualisierte Fassung. Herzogia 23: 229248.CrossRefGoogle Scholar
Wirth, V. & Oberhollenzer, H. (eds) (1990) Lichen mapping in Europe. Stuttgarter Beiträge zur Naturkunde Ser. A (Biologie) 456: 1200.Google Scholar
Wright, I. J., Ackerly, D. D., Bongers, F. J. J. M., Harms, K. E., Ibarra-Manriquez, G., Martinez-Ramos, M., Mazer, S. J., Muller-Landau, H. C., Paz, H., Pitman, N. C. A. et al. (2007) Relationships among ecologically important dimensions of plant trait variation in seven neotropical forests. Annals of Botany 99: 10031015.CrossRefGoogle ScholarPubMed