Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-25T18:38:40.187Z Has data issue: false hasContentIssue false

GEOCHRONOLOGY AND PALEOENVIRONMENTAL FRAMEWORK FOR THE OLDEST ARCHAEOLOGICAL SITE (7800–7900 cal BP) IN THE WEST INDIES, BANWARI TRACE, TRINIDAD

Published online by Cambridge University Press:  21 September 2018

Kenneth Barnett Tankersley*
Affiliation:
Quaternary and Anthropocene Research Group, Department of Anthropology, University of Cincinnati, Cincinnati, OH 45221, USA
Nicholas P. Dunning
Affiliation:
Quaternary and Anthropocene Research Group, Department of Geography, University of Cincinnati, Cincinnati, OH 45221, USA
Lewis A. Owen
Affiliation:
Quaternary and Anthropocene Research Group, Department of Geology, University of Cincinnati, Cincinnati, OH 45221, USA (owenls@uc.edu)
Janine Sparks
Affiliation:
Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, 550 Stadium Mall Drive, West Lafayette, IN 47907, USA (jmsparks@purdue.edu)
*
(tankerkh@uc.edu, corresponding author)

Abstract

Banwari Trace, a well-stratified shell midden located in southeastern Trinidad, provides the oldest known archaeological evidence of human settlement in the West Indies and has been crucial to our understanding of the initial peopling of the greater Caribbean region. Detailed excavation profile descriptions, soil and faunal analyses, accelerator mass spectrometry radiocarbon and optically stimulated luminescence dating, and stable carbon isotope analyses provide an accurate chronology and paleoenvironmental framework for the natural and anthropogenic depositional history of this significant archaeological site. Our findings support the recognition of three Middle Holocene strata at Banwari Trace, which represent significant periods of midden deposition and environmental change at: ~7800–7900 cal BP (Level 3); ~6900–7400 cal BP (Level 2); and ~5500–6200 cal BP (Level 1). Stable carbon isotope analyses show the landscape was dominated by C3 vegetation throughout the Middle Holocene with a possible drying episode near the end of the Middle Holocene climatic optimum. Cedrosan potsherds discovered in the uppermost 25 cm (Level 0) suggest that a Late Holocene radiocarbon age of ~2770–2200 cal BP for charcoal from this stratum is valid and possibly contemporary with an apparently intrusive human burial recovered in 1971 at a depth of ~20 cm.

Banwari Trace, un conchal ubicado en el sureste de Trinidad, proporciona las evidencias arqueológicas más antiguas conocidas hasta el momento de asentamientos humanos en las Indias Occidentales que son cruciales para entender el poblamiento inicial de la región caribeña. Las descripciones detalladas de perfiles de excavación, análisis faunísticos y de suelos, datación de radiocarbono por acelerador de espectrometría de masas, fechamiento de luminiscencia ópticamente estimulada y análisis de isótopos estables de carbono, tomados en conjunto proporcionan una cronología precisa y un marco paleoambiental para la historia deposicional de este sitio. Nuestros hallazgos confirman la existencia de tres estratos del Holoceno medio que representan períodos significativos de deposición cultural y de cambios ambientales en los periodos aproximados de 7800-7900 cal aP (Nivel 3), 6900-7400 cal aP (Nivel 2) y 5500-6200 cal aP (Nivel 1). El análisis de isótopos estables de carbono demuestra que el paisaje fue dominado por vegetación de tipo C3 a lo largo del Holoceno medio, aunque es posible la ocurrencia de un episodio seco cerca del fin del Período Óptimo Climático. El descubrimiento de unos pocos tiestos del tipo Cedrosan en los 25 cm superiores (Nivel 0) respalda la validez de la datación radiocarbónica del carbón de este estrato para el Holoceno tardío (alrededor de 2770-2200 cal aP) y sugiere su contemporaneidad con un entierro humano aparentemente intrusivo recuperado en 1971 a la profundidad aproximada de 20 cm.

Type
Article
Copyright
Copyright © 2018 by the Society for American Archaeology 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References Cited

Ahmad, Nazeer 2011 Soils of the Caribbean. Ian Randle Publishers, Kingston, Jamaica.Google Scholar
Beard, John S. 1946 The Natural Vegetation of Trinidad. Clarendon Press, Oxford.Google Scholar
Boomert, Arie 2000 Trinidad, Tobago and the Lower Orinoco Interaction Sphere: An Archaeological/Ethnohistorical Study. Cairi Publications, Alkmaar, Netherlands.Google Scholar
Boomert, Arie 2006 Between the Mainland and the Islands. Antropologando 5(15):149180.Google Scholar
Boomert, Arie, and Harris, Peter O'Brien 1988 An Inventory of the Archaeological Sites in Trinidad and Tobago. Report 3. Classification in Terms of Cultural Resource Management. University of West Indies, St. Augustine.Google Scholar
Burnham, Robyn, and Graham, Alan 1999 The History of Neotropical Vegetation: New Developments and Status. Association of Missouri Botanical Gardens 86(2):546589.Google Scholar
Callaghan, Richard T. 2003 Comments on the Mainland Origins of the Preceramic Cultures of the Greater Antilles. Latin American Antiquity 14:323338.Google Scholar
Curtis, Jason H., Brenner, Mark, and Hodell, David A. 2001 Climate Change in the Circum-Caribbean (Late Pleistocene to Present) and Implications for Regional Biogeography. In Biogeography of the West Indies: Patterns and Perspectives, edited by Woods, Charles A., and Sergile, Florence E., pp. 3554. CRC Press, Boca Raton, Florida.Google Scholar
Durcan, Julie A., King, Georgia E., and Duller, Geoffrey A.T. 2015 DRAC: Dose Rate and Age Calculator for Trapped Charge Dating. Quaternary Geochronology 28:5461.Google Scholar
Eyre, Alan L. 1998 The Tropical Rainforest of the Eastern Caribbean: Present Status and Conservation. Caribbean Geography 9(2):101120.Google Scholar
Farrell, Pat, Duncan, Neil, Jones, John, Dunning, Nicholas, Pearsall, Deborah, and Siegel, Peter 2018 Trinidad. In Island Historical Ecology: Socionatural Landscapes of the Eastern and Southern Caribbean, edited by Siegel, Peter E., pp. 75128. Berghahn, New York.Google Scholar
Harris, Peter O. 1973 Summary of Trinidad Archaeology. Michaels Mount, Antigua.Google Scholar
Harris, Peter O. 1976 The Preceramic Period in Trinidad. Fundación Arqueológica, Antropológica e Histórica de Puerto Rico, San Juan.Google Scholar
Haug, Gerald H., Hughen, Konrad A., Sigman, Daniel M., Peterson, Larry C., and Röhl, Ursula 2001 Southward Migration of the Intertropical Convergence Zone Through the Holocene. Science 293:13041308.Google Scholar
Haas, Herbert, and Banewicz, John J. 1980 Radiocarbon Dating of Bone Apatite Using Thermal Release of CO2. Radiocarbon 22(2):537544.Google Scholar
Jain, Mayank, and Singhvi, Ashok K. 2001 Limits to Depletion of Blue-Green Light Stimulated Luminescence in Feldspars: Implications for Quartz Dating. Radiation Measurements 33(6):883892.Google Scholar
Kenny, Julian S. 2008 The Biological Diversity of Trinidad and Tobago: A Naturalist's Notes, Trinidad & Tobago. Prospect Press, MEP, Port of Spain.Google Scholar
Murray, Andrew S., and Wintle, Ann G. 2000 Luminescence Dating of Quartz Using an Improved Single-Aliquot Regenerative-Dose Protocol. Radiation Measurements 32(1):5773.Google Scholar
Murray, Andrew S., and Wintle, Ann G. 2003 The Single Aliquot Regenerative Dose Protocol: Potential for Improvements in Reliability. Radiation Measurements 37(4–5):377381.Google Scholar
Pagán-Jiménez, Jaime R., Rodríguez-Ramos, Reniel, Reid, Basil A., van den Bel, Martijn, and Hofman, Connie L. 2015 Early Dispersals of Maize and Other Food Plants into the Southern Caribbean and Northeastern South America. Quaternary Science Reviews 123:231246.Google Scholar
Porart, Naomi 2006 Use of Magnetic Separation for Purifying Quartz for Luminescence Dating. Ancient TL 24(2):3336.Google Scholar
Potter, Robert B., Barker, David, Conway, Dennis, and Klak, Thomas 2004 The Contemporary Caribbean. Pearson Education Limited, Harlow, UK.Google Scholar
Snow, Dean W. 1985 Affinities and Recent History of the Avifauna of Trinidad and Tobago. Ornithology Monograph 36:238246.Google Scholar
Siegel, Peter E., Jones, John G., Pearsall, Deborah, Dunning, Nicholas P., Farrell, Pat, Duncan, Neil, Curtis, Jason, and Singh, Sushant 2015 Paleoecological Evidence for First Human Colonization of the Eastern Caribbean. Quaternary Science Reviews 129:275295.Google Scholar
Surovell, Todd A. 2000 Radiocarbon Dating of Bone Apatite by Step Heating. Geoarchaeology 15(6):591608.Google Scholar
Tamers, Murry A. 1973 Instituto Venezolano de Investigaciones Cientificas Natural Radiocarbon Measurements Vii. Radiocarbon 15(2):307320.Google Scholar
Tankersley, Kenneth B., Murari, Madhav K., Crowley, Brooke E., Owen, Lewis A., Storrs, Glenn W., and Mortensen, Litsa 2015 Quaternary Chronostratigraphy and Stable Isotope Paleoecology of Big Bone Lick, Kentucky, USA. Quaternary Research 83(3):479487.Google Scholar
Tankersley, Kenneth B., Dunning, Nicholas, Scarborough, Vernon L., Jones, John, Carr, Christopher, and Lentz, David 2015 Fire and Water: The Archaeological Significance of Tikal's Quaternary Sediments. In The Archaeology of Tikal, edited by Lentz, David, pp. 186211. Cambridge University Press, Cambridge.Google Scholar
Tankersley, Kenneth B., Conover, Denis, and Lentz, David 2016 Stable Carbon Isotope Values (δ13C) of Purslane (Portulaca oleracea) and Their Archaeological Significance. Journal of Archaeological Science: Reports 7:189194.Google Scholar
Wilson, Samuel 2007 The Archaeology of the Caribbean. Cambridge University Press, Cambridge.Google Scholar
Wong, Theo, Vletter, D.R. De, and Krook, L. 1998 The History of Earth Sciences in Suriname. Royal Netherlands Academy of Arts and Sciences Netherlands Institute, Amsterdam.Google Scholar