Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-26T01:51:50.021Z Has data issue: false hasContentIssue false

Xe K-shell X-ray generation using conical nozzle and 25 TW laser

Published online by Cambridge University Press:  26 June 2013

Y. Hayashi*
Affiliation:
Quantum Beam Science Directorate, Japan Atomic Energy Agency, Kizugawa, Kyoto, Japan Graduate School of Pure and Applied Science, University of Tsukuba, Tsukuba, Ibaraki, Japan
A.S. Pirozhkov
Affiliation:
Quantum Beam Science Directorate, Japan Atomic Energy Agency, Kizugawa, Kyoto, Japan
M. Kando
Affiliation:
Quantum Beam Science Directorate, Japan Atomic Energy Agency, Kizugawa, Kyoto, Japan
K. Ogura
Affiliation:
Quantum Beam Science Directorate, Japan Atomic Energy Agency, Kizugawa, Kyoto, Japan
H. Kotaki
Affiliation:
Quantum Beam Science Directorate, Japan Atomic Energy Agency, Kizugawa, Kyoto, Japan
H. Kiriyama
Affiliation:
Quantum Beam Science Directorate, Japan Atomic Energy Agency, Kizugawa, Kyoto, Japan
H. Okada
Affiliation:
Quantum Beam Science Directorate, Japan Atomic Energy Agency, Kizugawa, Kyoto, Japan
H. Gotoh
Affiliation:
Graduate School of Pure and Applied Science, University of Tsukuba, Tsukuba, Ibaraki, Japan NTT Basic Research Laboratories, NTT Corporation, Atsugi, Kanagawa, Japan
T. Nishikawa
Affiliation:
Graduate School of Pure and Applied Science, University of Tsukuba, Tsukuba, Ibaraki, Japan Department of Electrical and Electronic Engineering, Tokyo Denki University, Adachi, Tokyo, Japan
*
Address correspondence and reprint requests to: Y. Hayashi, Quantum Beam Science Directorate, Japan Atomic Energy Agency, Kizugawa, Kyoto, Japan. E-mail: hayashi.yukio@jaea.go.jp

Abstract

To increase X-ray photon number generated by laser-cluster interaction, it is important to understand the dependence of X-ray generation on cluster size. We carried out Xe K-shell X-ray generation using a conical nozzle with Xe clusters, the radius of which was controllable by adjusting the backing pressure. The experiment clarifies the result that the Xe K-shell X-ray photon number increases with increasing cluster radius from 8 to 12 nm, and saturates at the radius between 12 and 17 nm. We also investigated the Xe K-shell X-ray photon number dependence on laser intensity, and found that the threshold laser intensity of the Xe K-shell X-ray generation exists between 2 × 1017 and 5 × 1018 W/cm2.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Boldarev, A.S., Gasilov, V.A., Faenov, A.Y., Fukuda, Y. & Yamakawa, K. (2006). Gas-cluster targets for femtosecond laser interaction: Modeling and optimization. Rev. Sci. Instrum. 77, 083112.CrossRefGoogle Scholar
Brunel, F. (1987). Not-so-resonant, resonant absorption. Phys. Rev. Lett. 59, 5255.CrossRefGoogle ScholarPubMed
Danylchenko, O.G., Kovalenko, S.I. & Samovarov, V.N. (2008). Experimental verification of the Hagena relation for large clusters formed in a conical nozzle. Tech. Phys. Lett. 34, 10371040.CrossRefGoogle Scholar
Deiss, C. (2009). Simulation of the dynamics of laser-cluster interaction. PhD Thesis. Vienna: Vienna University of Technology Press.Google Scholar
Ditmire, T., Donnelly, T., Rubenchik, A.M., Falcone, R.W. & Perry, M.D. (1996). Interaction of intense laser pulses with atomic clusters. Phys. Rev. A 53, 33793402.CrossRefGoogle ScholarPubMed
Dorchies, F., Blasco, F., Bonte, C., Caillaud, T., Fourment, C. & Peyrusse, O. (2008). Observation of subpicosecond X-ray emission from laser-cluster interaction. Phys. Rev. Lett. 100, 205002.CrossRefGoogle ScholarPubMed
Hagena, O.F. (1992). Cluster ion sources (invited). Rev. Sci. Instrum. 63, 23742379.CrossRefGoogle Scholar
Hayashi, Y., Pirozhkov, A.S., Kando, M., Fukuda, Y., Faenov, A., Kawase, K., Pikuz, T., Nakamura, T., Kiriyama, H., Okada, H. & Bulanov, S.V. (2011). Efficient generation of Xe K-shell X rays by high-contrast interaction with submicrometer clusters. Opt. Lett. 36, 16141616.CrossRefGoogle ScholarPubMed
ISO. (2005). ISO 11146: Lasers and laser-related equipment. Test methods for laser beam widths, divergence angles and beam propagation ratios.Google Scholar
Issac, R.C., Vieux, G., Ersfeld, B., Brunetti, E., Jamison, S.P., Gallacher, J., Clark, D. & Jaroszynski, D.A. (2004). Ultra hard X rays from krypton clusters heated by intense laser fields. Phys. Plasmas 11, 34913496.CrossRefGoogle Scholar
Kiriyama, H., Mori, M., Nakai, Y., Shimomura, T., Sasao, H., Tanoue, M., Kanazawa, S., Wakai, D., Sasao, F., Okada, H., Daito, I., Suzuki, M., Kondo, S., Kondo, K., Sugiyama, A., Bolton, P.R., Yokoyama, A., Daido, H., Kawanishi, S., Kimura, T. & Tajima, T. (2010). High temporal and spatial quality petawatt-class Ti:sapphire chirped-pulse amplification laser system. Opt. Lett. 35, 14971499.CrossRefGoogle ScholarPubMed
Kmetec, J.D., Gordon, C.L., Macklin, J.J., Lemoff, B.E., Brown, G.S. & Harris, S.E. (1992). MeV X-ray generation with a femtosecond laser. Phys. Rev. Lett. 68, 15271530.CrossRefGoogle ScholarPubMed
Krainov, V.P. & Smirnov, M.B. (2002). Cluster beams in the super-intense femtosecond laser pulse. Phys. Rep. 370, 237331.CrossRefGoogle Scholar
Kruer, W. (2003). The Physics of Laser Plasma Interactions. Boulder, CO: Westview Press.Google Scholar
Kugland, N.L., Neumayer, P., Doppner, T., Chung, H.-K., Constantin, C.G., Girard, F., Glenzer, S.H., Kemp, A. & Niemann, C. (2008). High contrast Kr gas jet Kα X-ray source for high energy density physics experiments. Rev. Sci. Instrum. 79, 10E917.CrossRefGoogle Scholar
McCall, G.H. (1982). Calculation of X-ray bremsstrahlung and characteristic line emission produced by a Maxwellian electron distribution. J. Phys. D: Appl. Phys. 15, 823831.CrossRefGoogle Scholar
McPherson, A., Thompson, B.D., Borisov, A.B., Boyer, K. & Rhodes, C.K. (1994). Multiphoton-induced X-ray emission at 4–5 keV from Xe atoms with multiple core vacancies. Nature (London) 370, 631634.CrossRefGoogle Scholar
Milosavljevic, M. & Naker, E. (2006). Weibel filament decay and thermalization in collisionless shocks and gamma-ray burst afterglows. Astrophys. J. 641, 978983.CrossRefGoogle Scholar
Prigent, C., Deiss, C., Lamour, E., Rozet, J.P., Vernhet, D. & Burgdorfer, J. (2008). Effect of pulse duration on the X-ray emission from Ar clusters in intense laser fields. Phys. Rev. A 78, 053201.CrossRefGoogle Scholar
Semushin, S. & Malka, V. (2001). High density gas jet nozzle design for laser target production. Rev. Sci. Instrum. 72, 2961–2695.CrossRefGoogle Scholar
Zhang, L., Chen, L.M., Yuan, D.W., Yan, W.C., Wang, Z.H., Liu, C., Shen, Z.W., Faenov, A., Pikuz, T., Skobelev, I., Gasilov, V., Boldarev, A., Mao, J.Y., Li, Y.T., Dong, Q.L., Lu, X., Ma, J.L., Wang, W.M., Sheng, Z.M. & Zhang, J. (2011). Enhanced Kα output of Ar and Kr using size optimized cluster target irradiated by high-contrast laser pulses. Opt. Express 19, 2581225822.CrossRefGoogle ScholarPubMed