Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-10T05:27:19.109Z Has data issue: false hasContentIssue false

Transient absorption and laser gain in e-beam-excited Ar/Kr/NF3(F2 + N2) gas mixtures

Published online by Cambridge University Press:  15 March 2011

N.N. Ustinovskii*
Affiliation:
Lebedev Physics Institute, Moscow, Russia
A.O. Levchenko
Affiliation:
Lebedev Physics Institute, Moscow, Russia
V.D. Zvorykin
Affiliation:
Lebedev Physics Institute, Moscow, Russia
*
Address correspondence and reprint requests to: N.N. Ustinovskii, Lebedev Physics Institute, Leninsky Prospect 53, Moscow 119991, Russia. E-mail: ustin@sci.lebedev.ru

Abstract

Newly developed erosion-plasma-source probe technique has been applied for virtually single shot recording of absorption/fluorescence spectra in the 190–510 nm spectral range of e-beam-excited Ar/Kr/NF3(F2 + N2) mixtures. The e-beam excitation rate of about 1 MW/cm3 is typical of large-volume rare-gas halide lasers. It is experimentally observed that, in Kr/F2 and Ar/F2 mixtures, fluorescence and absorption spectra of Rg2F species are shifted with respect to each other in the opposite direction. Continuous absorption spectrum of Ar2F excimer is reported, as far as we know, for the first time in the refereed literature. Strong overlapping between the fluorescence and absorption spectra of Ar2F is responsible for absence of lasing on Ar2F molecule. Absorption spectrum of Kr2F excimer is recorded in pure form using the mixture (Ne/Kr/F2) with no alternative broadband absorber. Minor additive of nitrogen to Ar/Kr/F2 mixture or use of NF3 instead of F2 has been found to result in broadband optical amplification centered at λ ~ 460 nm. The maximum optical gain is estimated as about 0.1 ± 0.05 m−1.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Basov, N.G., Gus'kov, S.Yu. & Feoktistov, L.P. (1992). Thermonuclear gain of ICF targets with direct heating of ignitor. J. Sov. Laser Res. 13, 396399.CrossRefGoogle Scholar
Basov, N.G., Zuev, V.S., Kanaev, A.V., Mikheev, L.D. & Stavrovskii, D.B. (1980). Stimulated emission from the triatomic excimer Kr2F subjected to optical pumping. Sov. J. Quant. Electron. 7, 26602661.Google Scholar
Betti, R, Zhou, C.D., Anderson, K.S., Perkins, L.J., Theobald, W. & Solodov, A.A. (2007). Shock ignition of thermonuclear fuel with high areal density. Phys. Rev. Lett. 98, 155001-1/155001-4.CrossRefGoogle ScholarPubMed
Bigio, I.J., Czuchlewski, S.J., Mccown, A.W. & Taylor, A.J. (1990). Recent Advances in Excimer Laser Technology at Los Alamos. Los Alamos Unclassified Report LAUR-89-2875, http://catalog.lanl.gov/F.Google Scholar
Boichenko, A.M., Tarasenko, V.F. & Yakovlenko, S.I. (2000). Exciplex Rare–Halide Lasers. Laser Physics 10, 11591187.Google Scholar
Brau, C.A. (1984). Rare gas Halogen excimers. In Topics in Applied Physics (Rhodes, Ch.K., Ed.), Vol. 30, pp. 87138. New York: Springer.Google Scholar
Chantry, P.J. (1982). Negative ion formation in gas lasers. In Applied Atomic Collision Physics (McDaniel, E.W. & Nighan, W.L., Eds), Vol 3, Chapter 2. New York: Academic Press.Google Scholar
Ernst, W.E.,Tittel, F.K., Wilson, W.L. & Marowsky, G. (1979). Gain conditions for electron-beam-excited Ar-N2 laser lines at 337.1, 357.7, and 380.5 nm. J. Appl. Phys. 50, 38793883.CrossRefGoogle Scholar
Geohegan, D.B. & Eden, J.G. (1988). Absorption spectrum of Kr2F(4 2Γ) in the near ultraviolet and visible (335 ≤ λ≤ 600 nm): Comparison with Kr+2(1(1/2)u) measurements. J. Chem. Phys. 89, 34103427.CrossRefGoogle Scholar
Greene, D.P. & McCown, A.W. (1989). Transient absorpion spectrosopy of Kr2F(42Γ). Appl. Phys. Lett. 54, 19651967.CrossRefGoogle Scholar
Huestis, D.L., Marowsky, G. & Tittel, F.K. (1984). Triatomic rare-gas-Halide excimers. In Topics in Applied Physics (Rhodes, Ch.K., Ed.), Vol. 30, pp. 181216. New York: Springer.Google Scholar
Kanaev, A.V., Zafiropulos, V., Ait-Kaci, M., Museur, L., Nkwawo, H. & Castex, M.C. (1993). Excimer formation mechanism in gaseous krypton and Kr/N2 mixtures. J. Phys. D 27, 2937.Google Scholar
Langhoff, H. (1994). The origin of the higher continua emitted by the rare gases. J. Phys. B: At. Mol. Opt. Phys. 27, L709L714.CrossRefGoogle Scholar
Levchenko, A.O., Ustinovskii, N.N. & Zvorykin, V.D. (2010 a). Absorption spectra of e-beam-excited Ne, Ar and Kr, pure and in binary mixtures. J. Chem. Phys. 133, 154301/154310.CrossRefGoogle ScholarPubMed
Levchenko, A.O., Ustinovskii, N.N. & Zvorykin, V.D. (2010 b). Novel technique for transient absorption probing. J. Russian Laser Res. 31, 475480.CrossRefGoogle Scholar
Levchenko, A.O., Zvorykin, V.D., Likhomanova, S.V., Ustinovskii, N.N. & Shtan'ko, V.F. (2010 c). Amplification and generation of radiation at the 42Γ → 1,22Γ transition of the Kr2F molecule in an electron-beam-pumped wide-aperture laser. Q uan. Electr. 40, 203209.Google Scholar
Mandl, A. & Hyman, H.A. (1986). N2 excited state absorption in XeF laser. Appl. Phys. Lett. 49, 841843.CrossRefGoogle Scholar
Marowsky, G., Glass, G.P., Tittel, F.K., Hohla, K., Wilson, W.L. Jr. & Weber, H. (1982). Formation kinetics of the triatomic excimer Ar2F. IEEE J. QE. 18, 898902.CrossRefGoogle Scholar
McCown, A.W., Ediger, M.N., Geohegan, D.B. & Eden, J.G. (1985). Absorption of electronically excited Xe2Cl in the ultraviolet. J. Chem. Phys. 82, 48624866.CrossRefGoogle Scholar
Miller, M., Friedman, J.F., Miller, A.E.S. & Paulson, J.F. (1995). Thermal electron attachment to NF3, PF3, and PF5. Internat. J. Mass Spectr. Ion Proc. 149–150, 111121.CrossRefGoogle Scholar
Molchanov, A.G. (1988). Theory of active media of excimer lasers. Proc. of Lebedev Phys. Inst. 171, 72167.Google Scholar
Molchanov, A.G. (2006). Short pulse amplification in a KrF-laser and the petawatt excimer laser problem. J. Phys. IV France 133, 665668.CrossRefGoogle Scholar
Obenschain, S.P., Sethian, J.D. & Schmitt, A.J. (2009). A laser based fusion test facility. Fusion Sci. Techn. 56, 594603.CrossRefGoogle Scholar
Pressley, R.J. (1971). Handbook of Lasers with Selected Data on Optical Technology. Cleveland: Chemical Rubber Co.Google Scholar
Rokni, M. & Jacob, J.H. (1982). Rare-gas Halide lasers. In Applied Atomic Collision Physics (McDaniel, E.W. & Nighan, W.L., Eds.), Vol. 3, Chapter 10. New York: Academic Press.Google Scholar
Sauerbrey, R., Tittel, F.K., Wilson, W.L. Jr. & Nighan, W.L. (1982). Effect of nitrogen on XeF(C-A) and Xe2Cl laser performance. IEEE J.QE. 18, 13361340.CrossRefGoogle Scholar
Sauerbrey, R., Zhu, Y., Tittel, F.K. & Wilson, W.L. Jr. (1986). Optical emission and kinetic reactions of a four-atomic rare gas halide exciplex: Ar3F. J. Chem. Phys. 85, 12991302.CrossRefGoogle Scholar
Schloss, J.H., Tran, H.C. & Eden, J.G. (1997). Photo dissociation of Kr2F(4 2Γ) in the ultraviolet and near-infrared: Wavelength dependence of KrF (B 2Σ) yield. J. Chem. Phys. 106, 54235428.CrossRefGoogle Scholar
Shannon, D.C., Killeen, K.P. & Eden, J.G. (1988). Br2 ion pair state formation by electron beam excitation. J. Chem. Phys. 88, 17191731.CrossRefGoogle Scholar
Shaw, M.J. & Jones, J.D.C. (1977). Measurements of some reaction rates of importance in KrF lasers. Appl. Phys. 14, 393398.CrossRefGoogle Scholar
Sherbakov, V.A. (1983). Calculation of thermonuclear laser target ignition by focusing shock wave. Sov. J. Plasma Phys. 9, 240244.Google Scholar
Smith, D., Adams, N.G., Alge, E., Villinger, H. & Lindinger, W. (1980). Reactions of Ne2+, Ar2+, Kr2+ and Xe2+ with the rare gases at low energies. J. Phys. B: Atom. Mol. Phys. 13, 27872799.CrossRefGoogle Scholar
Tabak, M., Hammer, J., Glinsky, M.E., Kruer, W.L., Wilks, S.C., Woodworth, J., Campbell, E.M. & Perry, M.D. (1994). Ignition and high gain with ultrapowerful lasers. Phys. Plasmas 1, 16261634.CrossRefGoogle Scholar
Tellinghuisen, J. (1982). Spectroscopy and excited state chemistry of excimer lasers. In Applied Atomic Collision Physics (McDaniel, E.W. & Nighan, W.L., Eds), Vol. 3. Chapter 9. New York: Academic Press.Google Scholar
Tittel, F.K., Smayling, M. & Wilson, W.L. (1980). Blue laser action by rare-gas halide trimer Kr2F. Appl. Phys. Lett. 37, 862864.CrossRefGoogle Scholar
Wadt, W.R. & Hay, P.J. (1978). Electronic states of Ar2F and Kr2F. J. Chem. Phys. 68, 38503863.CrossRefGoogle Scholar
Wadt, W.R. (1980). The electronic states of Ne2+, Ar2+, Kr2+, and Xe2+. II. Absorption cross sections for the 1(1/2)u → 1(3/2)g, 1(1/2)g, 2(1/2)g transitions. J. Chem. Phys. 73, 39153926.CrossRefGoogle Scholar
Wieser, J., Ulrich, A., Fedenev, A. & Salvermoser, M. (2000). Novel pathways to the assignment of the third rare gas excimer continua. Opt. Comm. 173, 233245.CrossRefGoogle Scholar
Xu, J., Gadomski, W. & Setser, D.W. (1993). Electronic quenching rate constants of KrF(B,C) and Kr2F*. J. Chem. Phys. 99, 25912600.CrossRefGoogle Scholar
Zuev, V.S., Kanaev, A.V., Mikheev, L.D. & Stavrovskii, D.B. (1981). Investigation of luminescence in the 420 nm range as a result of photolysis of KrF2 in mixtures with Ar, Kr, and N2. Sov. J. Quant. Electron. 11, 13301335.CrossRefGoogle Scholar
Zvorykin, V.D., Arlantsev, S.V., Bakaev, V.G., Rantsev, O.V., Sergeev, P.B., Sychugov, G.V. & Tserkovnikov, A.Y. (2001). Transport of electron beams and stability of optical windows in high-power e-beam-pumped krypton fluoride lasers. Laser Part. Beams 19, 609622.CrossRefGoogle Scholar
Zvorykin, V.D., Didenko, N.V., Ionin, A.A., Kholin, I.V., Konyashchenko, A.V., Krokhin, O.N., Levchenko, A.O., Mavritskii, A.O., Mesyats, G.A., Molchanov, A.G., Rogulev, M.A., Seleznev, L.V., Sinitsyn, D.V., Tenyakov, S.Yu., Ustinovskii, N.N. & Zayarnyi, D.A. (2007). GARPUN-MTW: A hybrid Ti:Sapphire/KrF laser facility for simultaneous amplification of subpicosecond/nanosecond pulses relevant to fast-ignition ICF concept. Laser Part. Beams 25, 435451.CrossRefGoogle Scholar