Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-11T06:27:56.153Z Has data issue: false hasContentIssue false

Target heating in high-energy-density matter experiments at the proposed GSI FAIR facility: Non-linear bunch rotation in SIS100 and optimization of spot size and pulse length

Published online by Cambridge University Press:  01 October 2004

N.A. TAHIR
Affiliation:
Gesellschaft für Schwerionenforschung, Darmstadt, Germany
S. UDREA
Affiliation:
Institut für Kernphysik, Technische Universität Darmstadt, Germany
C. DEUTSCH
Affiliation:
Laboratoire de Physik des Gaz et des Plasmas, Universite Paris-Sud, Orsay, France
V.E. FORTOV
Affiliation:
Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Russia
N. GRANDJOUAN
Affiliation:
Ecole Polytechnique, CNRS-CEA, Universite Paris VI, Palaiseau, France
V. GRYAZNOV
Affiliation:
Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Russia
D.H.H. HOFFMANN
Affiliation:
Gesellschaft für Schwerionenforschung, Darmstadt, Germany Institut für Kernphysik, Technische Universität Darmstadt, Germany
P. HÜLSMANN
Affiliation:
Gesellschaft für Schwerionenforschung, Darmstadt, Germany
M. KIRK
Affiliation:
Gesellschaft für Schwerionenforschung, Darmstadt, Germany
I.V. LOMONOSOV
Affiliation:
Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Russia
A.R. PIRIZ
Affiliation:
E.T.S.I. Industriales, Universidad de Castilla-La Mancha, Ciudad Real, Spain
A. SHUTOV
Affiliation:
Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Russia
P. SPILLER
Affiliation:
Gesellschaft für Schwerionenforschung, Darmstadt, Germany
M. TEMPORAL
Affiliation:
E.T.S.I. Industriales, Universidad de Castilla-La Mancha, Ciudad Real, Spain
D. VARENTSOV
Affiliation:
Institut für Kernphysik, Technische Universität Darmstadt, Germany

Abstract

The Gesellschaft für Schwerionenforschung (GSI) Darmstadt has been approved to build a new powerful facility named FAIR (Facility for Antiprotons and Ion Research) which involves the construction of a new synchrotron ring SIS100. In this paper, we will report on the results of a parameter study that has been carried out to estimate the minimum pulse lengths and the maximum peak powers achievable, using bunch rotation RF gymnastic-including nonlinearities of the RF gap voltage in SIS100, using a longitudinal dynamics particle in cell (PIC) code, ESME. These calculations have shown that a pulse length of the order of 20 ns may be possible when no prebunching is performed while the pulse length gradually increases with the prebunching voltage. Three different cases, including 0.4 GeV/u, 1 GeV/u, and 2.7 GeV/u are considered for the particle energy. The worst case is for the kinetic energy of 0.4 GeV/u which leads to a pulse length of about 100 ns for a prebunching voltage of 100 kV (RF amplitude). The peak power was found to have a maximum, however, at 0.5–1.5kV prebunching voltage, depending on the mean kinetic energy of the ions. It is expected that the SIS100 will deliver a beam with an intensity of 1–2 × 1012 ions. Availability of such a powerful beam will make it possible to study the properties of high-energy-density (HED) matter in a parameter range that is very difficult to access by other means. These studies involve irradiation of high density targets by the ion beam for which optimization of the target heating is the key problem. The temperature to which a target can be heated depends on the power that is deposited in the material by the projectile ions. The optimization of the power, however, depends on the interplay of various parameters including beam intensity, beam spot area, and duration of the ion bunch. The purpose of this paper is to determine a set of the above parameters that would lead to an optimized target heating by the future SIS100 beam.

Type
Research Article
Copyright
© 2004 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bakhmetjev, I.E., Fertman, A.D., Golubev, A.A., Kantsyrev, A.V., Luckjashin, V.E., Sharkov, B.Yu., Turtikov, V.I., Kunin, A.V., Vatulin, V.V., Zidkiv, N.V., Baldina, E.G., Neuner, U., Wieser, J., Jacoby, J. & Hoffmann, D.H.H. (2003). Research into the advanced experimental methods for precision ion stopping range measurements in matter. Laser Part. Beam. 21, 1.Google Scholar
Bushman, A.V. & Fortov, V.E. (1987). Wide-range equation of state for matter under extreme conditions. Sov. Tech. Rev. B 1, 219.Google Scholar
Chao, Wu.A. & Tinger, M. (1998). Handbook of Accelerator Physics and Engineering. Maury Tigner (Ed.), Hackensack, NJ: World Scientist.
Deutsch, C. (1986). Inertial conferment fusion driven by intense heavy ion beams. Ann. Phys. Fr. 11, 1.CrossRefGoogle Scholar
Fortov, V.E., Goel, B., Munz, C.-D., Ni, A.L., Shutov, A. & Vorobiev, O.Yu. (1996). numerical simulations of non-stationary fronts and interfaces by the godunov method in moving grids. Nucl. Sci. Eng. 123, 169.CrossRefGoogle Scholar
Funk, U., Bock, R., Dornik, M., Geissel, M., Stetter, M., Stöwe, S., Tahir, N.A. & Hoffmann, D.H.H. (1998). High energy density in solid rare gas targets and solid hydrogen. Nucl. Instr. Meth. A 415, 68.CrossRefGoogle Scholar
Hasegawa, J., Yokoya, N., Kobayashi, Y., Yoshida, M., Kojima, M., Sasaki, T., Fukuda, H., Ogawa, M., Oguri, Y. & Murakami, T. (2003). Stopping power of dense helium plasma for fast heavy ions. Laser Part. Beam. 21, 7.CrossRefGoogle Scholar
Hoffmann, D.H.H., Weyrich, K., Wahl, H., Gardes, D., Bimbot, R. & Fleurier, C. (1990). Energy loss of heavy ions in plasma target. Phys. Rev. A 42, 2313.CrossRefGoogle Scholar
Hoffmann, D.H.H., Fortov, V.E, Lomonosov, I.V., Mintsev, V., Tahir, N.A., Varentsov, D. & Wieser, J. (2002). Unique Capabilities of Heavy Ion Beams as a Tool for Equation-of-State Studies. Phys. Plasmas 9, 3651.Google Scholar
MacLachlan, J. (1990). Fundamentals of particle tracking for longitudinal projection of beam phasespace in synchrotrons. Fermilab Note, FN-481, Batavia, IL.
Mehlhorn, T. (1981). A finite temperature model for ion energy deposition in ion driven inertial connement fusion targets. J. Appl. Phys. 52, 6522.CrossRefGoogle Scholar
Müller, R. & Spiller, P. (1996). Strategy for achieving high target power density with a modied sis18 and the new high current injector. GSI Rep. GSI-96-07.Google Scholar
Mustafin, E., Boine-Frankenheim, O., Hofmann, I. & Spiller, P. (2002). Beam losses in heavy ion drivers. Laser Part. Beam. 20, 637.CrossRefGoogle Scholar
Nardi, E. & Zinamon, Z. (1982). Charge state and slowing down of fast ions in plasmas. Phys. Rev. Lett. 49, 1251.CrossRefGoogle Scholar
Neuner, U., Bock, R., Constantin. C., Dewald, E., Funk, U., Geissel, M., Hakuli, S., Hoffmann, D.H.H., Jacoby, J., Kozyreva, A., Roth, M., Spiller, P., Tahir, N.A., Tauschwitz, A., Udrea, S., Varentsov, D., &Wieser, J. (2000). Shaping of intense ion beams into hollow cylindrical forms. Phys. Rev. Lett. 85, 4518.CrossRefGoogle Scholar
Piriz, A.R., Portugues, R., Tahir, N.A. & Hoffmann, D.H.H. (2002a). Implosion of multi-layered cylindrical targets driven by intense heavy ion beams interacting with solid targets. Phys. Rev. E 66, 485.Google Scholar
Piriz, A.R., Portugues, R., Tahir, N.A. & Hoffmann, D.H.H. (2002b). Analytic model for studying heavy ion imploded cylindrical targets. Laser Part. Beams 20, 427.Google Scholar
Stöwe, S., Bock, R., Dornik, M., Spiller, P., Stetter, M., Fortov, V.E., Mintsev, V., Kulish, M., Shutov, A., Yakushev, V., Sharkov, B., Golubev, A., Bruynetkin, B., Funk, U., Geissel, M., Hoffmann, D.H.H. & Tahir, N.A. (1998). High energy density plasmas with heavy ions. Nucl. Instr. Meth. A 415, 68.Google Scholar
Tahir, N.A., Hoffmann, D.H.H., Kozyreva, A., Shutov, A., Maruhn, J.A., Neuner, U., Tauschwitz, A., Spiller, P. & Bock, R. (2000a). Shock compression of condensed matter using intense heavy ion beams. Phys. Rev. E 61, 1975.Google Scholar
Tahir, N.A., Hoffmann, D.H.H., Kozyreva, A., Shutov, A., Maruhn, J.A., Neuner, U., Tauschwitz, A., Spiller, P. & Bock, R. (2000b). Equation ofstate properties of high-energy-density matter using intense heavy ion beams with an annular focal spot. Phys. Rev. E 62, 1232.Google Scholar
Tahir, N.A., Hoffmann, D.H.H., Kozyreva, A., Tauschwitz, A., Shutov, A., Maruhn, J.A., Neuner, U., Spiller, P., Roth, M., Jacoby, J., Bock, R., Juranek, H. & Redmer, R. (2001). Hydrogen metallization in heavy ion imploded multi-layered cylindrical targets. Phys. Rev. E 63, 016402-1-9.Google Scholar
Tahir, N.A., Shutov, A., Varentsov, D., Spiller, P., Udrea, U., Hoffmann, D.H.H., Lomonosov, I.V., Wieser, J., Kirk, M., Piriz, A.R., Fortov, V.E. & Bock, R. (2003a). Inuence of equation-of-state of matter and beam characteristics on target heating and compression. Phys. Rev. ST AB 6, 020101.Google Scholar
Tahir, N.A., Deutsch, C., Fortov, V.E, Gryaznov, V.K, Hofmann, D.H.H., Juranek, H., Lomonosov, I.V., Piriz, A.R., Redmer, R., Shutov, A., Spiller, P., Temporal, M., Udrea, U. & Varentsov, D. (2003b). Intense heavy ion beams as a tool to induce high-energy-density states in matter. Plasma Phys. 43, 373.Google Scholar
Temporal, M., Piriz, A.R., Grandjouan, N., Tahir, N.A. & Hofmann, D.H.H. (2003). Numerical analysis of multi-layered cylindrical target compression driven by a rotating intense heavy ion beam. Laser Part. Beams 21, 605.CrossRefGoogle Scholar
Varentsov, D., Tahir, N.A., Lomonosov, I.V., Hofmann, D.H.H., Wieser, J. & Fortov, V.E. (2003). Energy loss dynamics of intense uranium beam with solid neon for equation of state studies. Euro Phys. Lett. 64, 57.CrossRefGoogle Scholar
Ziegler, J.F., Biersack, J.P & Littmark, U. (1996). The Stopping and Ranges of Ions in Solids, New York: Pergamon Press.