Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-11T08:43:58.713Z Has data issue: false hasContentIssue false

Studies of ablated plasma and shocks produced in a planar target by a sub-nanosecond laser pulse of intensity relevant to shock ignition

Published online by Cambridge University Press:  09 July 2015

J. Badziak*
Affiliation:
Institute of Plasma Physics and Laser Microfusion, Warsaw, Poland
L. Antonelli
Affiliation:
University of Roma “Tor Vergata”, Roma, Italy Centre Lasers Intenses et Applications, Universite Bordeaux 1, Talence, France
F. Baffigi
Affiliation:
Intense Laser Irradiation Laboratory, INO-CNR, Pisa, Italy
D. Batani
Affiliation:
Centre Lasers Intenses et Applications, Universite Bordeaux 1, Talence, France
T. Chodukowski
Affiliation:
Institute of Plasma Physics and Laser Microfusion, Warsaw, Poland
G. Cristoforetti
Affiliation:
Intense Laser Irradiation Laboratory, INO-CNR, Pisa, Italy
R. Dudzak
Affiliation:
Institute of Plasma Physics, Prague, Czech Republic
L.A. Gizzi
Affiliation:
Intense Laser Irradiation Laboratory, INO-CNR, Pisa, Italy
G. Folpini
Affiliation:
Centre Lasers Intenses et Applications, Universite Bordeaux 1, Talence, France
F. Hall
Affiliation:
Scitech Precision, Rutherford Appleton Laboratory, Didcot, UK
Z. Kalinowska
Affiliation:
Institute of Plasma Physics and Laser Microfusion, Warsaw, Poland
P. Koester
Affiliation:
Intense Laser Irradiation Laboratory, INO-CNR, Pisa, Italy
E. Krousky
Affiliation:
Institute of Physics, Prague, Czech Republic
M. Kucharik
Affiliation:
Czech Technical University, FNSPE, Prague, Czech Republic
L. Labate
Affiliation:
Intense Laser Irradiation Laboratory, INO-CNR, Pisa, Italy
R. Liska
Affiliation:
Czech Technical University, FNSPE, Prague, Czech Republic
G. Malka
Affiliation:
Centre Lasers Intenses et Applications, Universite Bordeaux 1, Talence, France
Y. Maheut
Affiliation:
Centre Lasers Intenses et Applications, Universite Bordeaux 1, Talence, France
P. Parys
Affiliation:
Institute of Plasma Physics and Laser Microfusion, Warsaw, Poland
M. Pfeifer
Affiliation:
Institute of Physics, Prague, Czech Republic
T. Pisarczyk
Affiliation:
Institute of Plasma Physics and Laser Microfusion, Warsaw, Poland
O. Renner
Affiliation:
Institute of Physics, Prague, Czech Republic
M. Rosiński
Affiliation:
Institute of Plasma Physics and Laser Microfusion, Warsaw, Poland
L. Ryć
Affiliation:
Institute of Plasma Physics and Laser Microfusion, Warsaw, Poland
J. Skala
Affiliation:
Institute of Physics, Prague, Czech Republic
M. Smid
Affiliation:
Institute of Physics, Prague, Czech Republic Czech Technical University, FNSPE, Prague, Czech Republic
C. Spindloe
Affiliation:
Scitech Precision, Rutherford Appleton Laboratory, Didcot, UK
J. Ullschmied
Affiliation:
Institute of Plasma Physics, Prague, Czech Republic
A. Zaraś-Szydłowska
Affiliation:
Institute of Plasma Physics and Laser Microfusion, Warsaw, Poland
*
Address correspondence and reprint requests to: Jan Badziak, Institute of Plasma Physics and Laser Microfusion, Warsaw, Poland. E-mail: jan.badziak@ipplm.pl

Abstract

The effect of laser intensity on characteristics of the plasma ablated from a low-Z (CH) planar target irradiated by a 250 ps, 0.438 µm laser pulse with the intensity of up to 1016 W/cm2 as well as on parameters of the laser-driven shock generated in the target for various scale-lengths of preformed plasma was investigated at the kilojoule Prague Asterix Laser System (PALS) laser facility. Characteristics of the plasma were measured with the use of 3-frame interferometry, ion diagnostics, an X-ray spectrometer, and Kα imaging. Parameters of the shock generated in a Cl doped CH target by the intense 3ω laser pulse were inferred by numerical hydrodynamic simulations from the measurements of craters produced by the shock in the massive Cu target behind the CH layer. It was found that the pressure of the shock generated in the plastic layer is relatively weakly influenced by the preplasma (the pressure drop due to the preplasma presence is ~10–20%) and at the pulse intensity of ~1016 W/cm2 the maximum pressure reaches ~80–90 Mbar. However, an increase in pressure of the shock with the laser intensity is slower than predicted by theory for a planar shock and the maximum pressure achieved in the experiment is by a factor of ~2 lower than predicted by the theory. Both at the preplasma absence and presence, the laser-to-hot electrons energy conversion efficiency is small, ~1% or below, and the influence of hot electrons on the generated shock is expected to be weak.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Atzeni, S., Schiavi, A., Califano, F., Cattani, F., Cornolti, F., Del Sarto, D., Liseykina, T.V., Macchi, A., & Pegoraro, F. (2005). Fluid and kinetic simulation of inertial confinement fusion plasmas. Comput. Phys. Commun. 169, 153159.CrossRefGoogle Scholar
Atzeni, S., Ribeyre, X., Schurtz, G., Schmitt, A.J., Canaud, B., Betti, R., & Perkins, L.J. (2014). Shock ignition of thermonuclear fuel: Principles and modelling. Nucl. Fusion 54, 054008.CrossRefGoogle Scholar
Badziak, J., Makowski, J., Parys, P., Ryc, L., Wolowski, J., Woryna, E., & Vankov, A.B. (2001). Intensity-dependent characteristics of a picosecond laser-produced Cu plasma. J. Phys. D: Appl. Phys. 34, 18851891.CrossRefGoogle Scholar
Badziak, J., Hora, H., Woryna, E., Jabłoński, S., Laśka, L., Parys, P., Rohlena, K., & Wołowski, J. (2003). Experimental evidence of differences in properties of fast ion fluxes from short-pulse and long-pulse laser–plasma interactions. Phys. Lett. A 315, 452457.CrossRefGoogle Scholar
Batani, D., Antonelli, L., Atzeni, S., Badziak, J., Baffigi, F., Chodukowski, T., Consoli, F., Cristoforetti, G., De Angelis, R., Dudzak, R., Folpini, G., Giuffrida, L., Gizzi, L.A., Kalinowska, Z., Koester, P., Krousky, E., Krus, M., Labate, L., Levato, T., Maheut, Y., Malka, G., Margarone, D., Marocchino, A., Nejdl, J., Nicolai, Ph., O'Dell, T., Pisarczyk, T., Renner, O., Rhee, Y.J., Ribeyre, X., Richetta, M., Rosinski, M., Sawicka, M., Schiavi, A., Skala, J., Smid, M., Spindloe, Ch., Ullschmied, J., Velyhan, A., & Vinci, T. (2014a). Generation of high pressure shocks relevant to the shock-ignition intensity regime. Phys. Plasmas 21, 032710.CrossRefGoogle Scholar
Batani, D., Baton, S., Casner, A., Depierreux, S., Hohenberger, M., Klimo, O., Koenig, M., Labaune, C., Ribeyre, X., Rousseaux, C., Schurtz, G., Theobald, W., & Tikhonchuk, V.T. (2014b). Physics issues for shock ignition. Nucl. Fusion 54, 054009.CrossRefGoogle Scholar
Baton, S.D., Koenig, M., Brambrink, E., Schlenvoigt, H.P., Rousseaux, C., Debras, G., Laffite, S., Loiseau, P., Philippe, F., Ribeyre, X., & Schurtz, G. (2012). Experiment in planar geometry for shock ignition studies. Phys. Rev. Lett. 108, 195002.CrossRefGoogle ScholarPubMed
Betti, R., Zhou, C.D., Anderson, K.S., Perkins, L.J., Theobald, W., & Solodov, A.A. (2007). Shock ignition of thermonuclear fuel with high areal density. Phys. Rev. Lett. 98, 155001.CrossRefGoogle ScholarPubMed
Betti, R., Theobald, W., Zhou, C.D., Anderson, K.S., McKenty, P.W., Skupsky, S., Shvarts, D., Goncharov, V.N., Delettrez, J.A., Radha, P.B., Sangster, T.C., Stoeckl, C., & Meyerhofer, D.D. (2008). Shock ignition of thermonuclear fuel with high areal densities. J. Phys.: Conf. Ser. 112, 022024.Google Scholar
Gitomer, S.J., Jones, R.D., Begay, F., Ehler, A.W., Kephart, J.F., & Kristal, R. (1986). Fast ions and hot electrons in the laser–plasma interaction. Phys. Fluids 29, 26792688.CrossRefGoogle Scholar
Guskov, S.Yu., Kasperczuk, A., Pisarczyk, T., Borodziuk, S., Ullschmied, J., Krousky, E., Masek, K., Pfeifer, M., Skala, J., & Pisarczyk, P. (2007). Energy of a shock wave generated in different metals under irradiation by a high-power laser pulse. J. Exp. Theor. Phys. 105, 793802.CrossRefGoogle Scholar
Gus'kov, S., Ribeyre, X., Touati, M., Feugeas, J.-L., Nicolai, Ph., & Tikhonchuk, V. (2012). Ablation pressure driven by an energetic electron beam in a dense plasma. Phys. Rev. Lett. 109, 255004.CrossRefGoogle Scholar
Gus'kov, S.Yu., Demchenko, N.N., Kasperczuk, A., Pisarczyk, T., Kalinowska, Z., Chodukowski, T., Renner, O., Smid, M., Krousky, E., Pfeifer, M., Skala, J., Ullschmied, J., & Pisarczyk, P. (2014). Laser-driven ablation through fast electrons in PALS-experiment at the laser radiation intensity of 1–50 PW/cm2. Laser Part. Beams 32, 177195.CrossRefGoogle Scholar
Hohenberger, M., Theobald, W., Hu, S.X., Anderson, K.S., Betti, R., Boehly, T.R., Casner, A., Fratanduono, D.E., Lafon, M., Meyerhofer, D.D., Nora, R., Ribeyre, X., Sangster, T.C., Schurtz, G., Seka, W., Stoeckl, C., & Yaakobi, B. (2014). Shock-ignition relevant experiments with planar targets on OMEGA. Phys. Plasmas 21, 022702.CrossRefGoogle Scholar
Jungwirth, K., Cejnarova, A., Juha, L., Kralikova, B., Krasa, J., Krousky, E., Krupickova, P., Laska, L., Masek, K., Mocek, T., Pfeifer, M., Präg, A., Renner, O., Rohlena, K., Rus, B., Skala, J., Straka, P., & Ullschmied, J. (2001). The Prague Asterix laser system. Phys. Plasmas 8, 2495.CrossRefGoogle Scholar
Kapin, T., Kucharik, M., Limpouch, J., Liska, R., & Vachal, P. (2008). Arbitrary Lagrangian Eulerian method for laser plasma simulations, Int. J. Numer. Methods Fluids 56, 13371342.CrossRefGoogle Scholar
Klimo, O., Weber, S., Tikhonchuk, V.T., & Limpouch, J. (2010). Particle-in-cell simulations of laser–plasma interaction for the shock ignition scenario. Plasma Phys. Control. Fusion 52, 055013.CrossRefGoogle Scholar
Koch, J.A., Aglitskiy, Y., Brown, C., Cowan, T., Freeman, R., Hatchett, S., Holland, G., Key, M., MacKinnon, A., Seely, J., Snavely, R., & Stephens, R. (2003). 4.5- and 8-keV emission and absorption x-ray imaging using spherically bent quartz 203 and 211 crystals. Rev. Sci. Instrum. 74, 2130.CrossRefGoogle Scholar
Koester, P., Antonelli, L., Atzeni, S., Badziak, J., Baffigi, F., Batani, D., Cecchetti, C.A., Chodukowski, T., Consoli, F., De. Cristoforetti, G., Angelis, R., Folpini, G., Gizzi, L.A., Kalinowska, Z., Krousky, E., Kucharik, M., Labate, L., Levato, T., Liska, R., Malka, G., Maheut, Y., Marocchino, A., Nicolai, P., O'Dell, T., Parys, P., Pisarczyk, T., Raczka, P., Renner, O., Rhee, Y.J., Ribeyre, X., Richetta, M., Rosinski, M., Ryc, L., Skala, J., Schiavi, A., Schurtz, G., Smid, M., Spindloe, C., Ullschmied, J., Wolowski, J., & Zaras, A. (2013). Recent results from experimental studies on laser–plasma coupling in a shock ignition relevant regime. Plasma Phys. Control. Fusion 55, 124045.CrossRefGoogle Scholar
Kruer, W.L. (1988). The Physics of Laser–Plasma Interactions. New York: Addison - Wesley.Google Scholar
Labate, L., Köster, P., Levato, T., & Gizzi, L.A. (2012). A novel technique for single-shot energy-resolved 2D x-ray imaging of plasmas relevant for the inertial confinement fusion. Rev. Sci. Instrum. 83, 103504.CrossRefGoogle ScholarPubMed
Lafon, M., Ribeyre, X., & Schurtz, G. (2013). Optimal conditions for shock ignition of scaled cryogenic deuterium–tritium targets. Phys. Plasmas 20, 022708.CrossRefGoogle Scholar
Láska, L., Jungwirth, K., Králiková, B., Krása, J., Pfeifer, M., Rohlena, K., Skála, J., Ullschmied, J., Badziak, J., Parys, P., Wolowski, J., Woryna, E., Gammino, S., Torrisi, L., Boody, F.P., & Hora, H. (2003). Generation of multiply charged ions at low and high laser-power densities. Plasma Phys. Control. Fusion 45, 585599.CrossRefGoogle Scholar
Lindl, J. (1995). Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain. Phys. Plasmas 2, 3933.CrossRefGoogle Scholar
Liska, R., Kucharik, M., Limpouch, J., Renner, O., Vachal, P., Bednarik, L., & Velechovsky, J. (2011). ALE method for simulations of laser-produced plasmas. In Finite Volumes for Complex Applications VI, Problems & Perspectives, (Fort, J., Furst, J., Halama, J., Herbin, R. and Hubert, F. Eds.) Vol. 2, pp. 857873. Berlin, Heidelberg: Springer-Verlag.CrossRefGoogle Scholar
MacFarlane, J.J., Golovkin, I.E., Wang, P., Woodruff, P.R., & Pereyra, N.A. (2007). SPECT3D – A multi-dimensional collisional-radiative code for generating diagnostic signatures based on hydrodynamics and PIC simulation output. High Energy Density Phys. 3, 181190.CrossRefGoogle Scholar
Nora, R., Theobald, W., Betti, R., Marshall, F.J., Michel, D.T., Seka, W., Yaakobi, B., Lafon, M., Stoeckl, C., Delettrez, J., Solodov, A.A., Casner, A., Reverdin, C., Ribeyre, X., Vallet, A., Peebles, J., Beg, F.N., & Wei, M.S. (2015). Gigabar spherical shock generation on the OMEGA laser. Phys. Rev. Lett. 114, 045001.CrossRefGoogle ScholarPubMed
Perkins, L.J., Betti, R., LaFortune, K.N., & Williams, W.H. (2009). Shock ignition: A new approach to high gain inertial confinement fusion on the national ignition facility. Phys. Rev. Lett. 103, 045004.CrossRefGoogle ScholarPubMed
Pisarczyk, T., Gus'kov, S.Yu., Kalinowska, Z., Badziak, J., Batani, D., Antonelli, L., Folpini, G., Maheut, Y., Baffigi, F., Borodziuk, S., Chodukowski, T., Cristoforetti, G., Demchenko, N.N., Gizzi, L.A., Kasperczuk, A., Koester, P., Krousky, E., Labate, L., Parys, P., Pfeifer, M., Renner, O., Smid, M., Rosinski, M., Skala, J., Dudzak, R., Ullschmied, J., & Pisarczyk, P. (2014). Pre-plasma effect on energy transfer from laser beam to shock wave generated in solid target. Phys. Plasmas 21, 012708.CrossRefGoogle Scholar
Puell, H. (1970). Heating of laser produced plasma generated at plane solid targets. Z. Naturforsch. 25a, 18071815.Google Scholar
Puell, H., Neusser, H.J., & Kaiser, W. (1970). Temperature and expansion energy of laser produced plasmas. Z. Naturforsch. 25a, 18151822.CrossRefGoogle Scholar
Ramis, R., Meyer-ter-Vehn, J., & Ramirez, J. (2009). MULTI2D – a computer code for two-dimensional radiation hydrodynamics. Comput. Phys. Commun., 180, 977994.CrossRefGoogle Scholar
Ribeyre, X., Schurtz, G., Lafon, M., Galera, S., & Weber, S. (2009). Shock ignition: An alternative scheme for HiPER. Plasma Phys. Control. Fusion 51, 015013.CrossRefGoogle Scholar
Scherbakov, V.A. (1983). Ignition of a laser-fusion target by a focusing shock wave. Sov. J. Plasma Phys. 9, 240.Google Scholar
Schmitt, A.J., Bates, J.W., Obenschain, S.P., Zalesak, S.T., & Fyfe, D.E. (2010). Shock ignition target design for inertial fusion energy. Phys. Plasmas 17, 042701.CrossRefGoogle Scholar
Scott, H.A. (2001). Cretin–a radiative transfer capability for laboratory plasmas. J. Quant. Spectrosc. Radiat. Transf. 71, 689701.CrossRefGoogle Scholar
Theobald, W., Betti, R., Stoeckl, C., Anderson, K.S., Delettrez, J.A., Glebov, V.Yu., Goncharov, V.N., Marshall, F.J., Maywar, D.N., McCrory, R.L., Meyerhofer, D.D., Radha, P.B., Sangster, T.C., Seka, W., Shvarts, D., Smalyuk, V.A., Solodov, A.A., Yaakobi, B., Zhou, C.D., Frenje, J.A., Li, C.K., Seguin, F.H., Petrasso, R.D., & Perkins, L.J. (2008). Initial experiments on the shock-ignition inertial confinement fusion concept. Phys. Plasmas 15, 056306.CrossRefGoogle Scholar
Torrisi, L., Foti, G., Giuffrida, L., Puglisi, D., Wolowski, J., Badziak, J., Parys, P., Rosinski, M., Margarone, D., Krasa, J., Velyhan, A., & Ullschmied, U. (2009). Single crystal silicon carbide detector of emitted ions and soft x rays from power laser-generated plasmas. J. Appl. Phys. 105, 123304.CrossRefGoogle Scholar
Wilks, S.C., Langdon, A.B., Cowan, T.E., Roth, M., Singh, M., Hatchett, S., Key, M.H., Pennington, D., MacKinnon, A., & Snavely, R.A. (2001). Energetic proton generation in ultra-intense laser–solid interactions. Phys. Plasmas 8, 542549.CrossRefGoogle Scholar
Woryna, E., Parys, P., Wołowski, J., & Mróz, W. (1996). Corpuscular diagnostics and processing methods applied in investigations of laser-produced plasma as a source of highly ionized ions. Laser Part. Beams 14, 293321.CrossRefGoogle Scholar