Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-26T00:14:29.875Z Has data issue: false hasContentIssue false

Protons and ion acceleration from thick targets at 1010 W/cm2 laser pulse intensity

Published online by Cambridge University Press:  22 December 2010

L. Torrisi
Affiliation:
Dipartimento di Fisica, Messina, Italy and INFN-Laboratori Nazionali del Sud, Catania, Italy
F. Caridi*
Affiliation:
Facoltà di Scienze MM.FF.NN., Università di Messina, Messina, Italy and INFN-Sez. CT, Gruppo collegato di Messina, Messina, Italy
L. Giuffrida
Affiliation:
Dipartimento di Fisica, Messina, Italy and INFN-Laboratori Nazionali del Sud, Catania, Italy
*
Address correspondence and reprint requests to: Francesco Caridi, Facoltà di Scienze MM.FF.NN., Università di Messina, Ctr. Papardo 31, 98166, Messina, Italy. E-mail: fcaridi@unime.it

Abstract

Proton ion acceleration via laser-generated plasma is investigated at relatively low laser pulse intensity, on the order of 1010 W/cm2. Time-of-flight technique is employed to measure the ion energy and the relative yield. An ion collector and an ion energy analyzer are used with this aim and to distinguish the number of charge states of the produced ions. The kinetic energy and the emission yield are measured through a consolidated theory, which assumes that the ion emission follows the Coulomb-Boltzmann-Shifted function. The proton stream is generated by thin and thick hydrogenated targets and it is dependent on the free electron states, which increase the laser absorption coefficient and the ion acceleration. The maximum proton energy, of about 200 eV, and the maximum proton amount can be obtained with thick metallic hydrogenated materials, such as the titanium hydrate TiH2.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Torrisi, L., Cavallaro, S., Giuffrida, L., Gammino, S. & Andò, L. (2010). Ti post-ion acceleration from laser ion source. Rad. Effects & Defects in Solids: Incorporating Plasma Science & Plasma Technology, Vol. 165, No. 6, 112.Google Scholar
Badziak, J., Kasperczuk, A., Parys, P., Pisarczyk, T., Rosiński, M., Ryć, L., Wolowski, J., Suchańska, R., Krása, J., Krousky, E., Láska, L., Mašek, K., Pfeifer, M., Rohlena, K., Skala, J., Ullschmied, J., Dhareshwar, L.J., Földes, I.B., Suta, T., Borrielli, A., Mezzasalma, A., Torrisi, L. & Pisarczyk, P. (2008). The effect of high-Z dopant on laser-driven acceleration of a thin plastic target. Appl. Phys. Lett. 92, 211 502.Google Scholar
Torrisi, L., Margarone, D., Gammino, S. & Andò, L. (2007). Ion energy increase in laser-generated plasma expanding through axial magnetic field trap. Laser and part. Beams 25 (3), 435.Google Scholar
Laska, L., Jungwirth, K., Krasa, J., Pfeifer, M., Rohlena, K., Ullschmied, J., Badziak, J., Parys, P., Wolowski, J., Gammino, S., Torrisi, L. & Boody, F.P. (2005). Charge-state and energy enhancement of laser-produced ions due to nonlinear processes in preformed plasma. Appl. Phys. Lett. 86, 081502.Google Scholar
Clark, E.L., Krushelnick, K., Zepf, M., Beg, F.N., Tarakis, M., Machacek, A., Santala, M.I.K., Watts, I., Norreys, P.A. & Dangor, A.E. (2000). Energetic Heavy-Ion and Proton Generation from Ultraintense Laser-Plasma Interactions with Solids. Phys. Rev. Lett. 85(8), 1654.CrossRefGoogle ScholarPubMed
Woryna, E., Parys, P., Wolowski, J. & Mroz, W. (1996). Corpuscular diagnostics and processing methods applied in investigations of laser-produced plasma as a source of highly ionized ions. Laser Part. Beams 14, 293.Google Scholar
Torrisi, L., Caridi, F., Margarone, D. & Giuffrida, L. (2008). Nickel plasma produced by 532-nm and 1064 nm pulsed laser ablation. Plasma Physics Reports, Vol. 34, No. 7, 547.Google Scholar
Torrisi, L., Gammino, S., Andò, L. & Laska, L. (2002). Tantalum ions produced by 1064 nm pulsed laser irradiation. J. Appl. Phys. 91(5), 4685.Google Scholar
Caridi, F., Torrisi, L. & Giuffrida, L. (2010). Time-of-flight and UV spectroscopy characterization of laser-generated plasma. Nucl. Instr. and Meth. B 268, 499.Google Scholar
Torrisi, L., Gammino, S., Andó, L., Laska, L., Krasa, J., Rohlena, K., Ullschmied, J., Wolowski, J., Badziak, J. & Parys, P. (2006). Equivalent ion temperature in Ta plasma produced by high energy laser ablation. J. Appl. Phys. 99, 083301.Google Scholar
Torrisi, L., Lorusso, A., Nassisi, V. & Picciotto, A. (2008). Characterization of laser ablation of polymethylmethacrylate at different laser wavelengths. Radiation Effects & Defects in Solids Vol. 163 (3), 179187.CrossRefGoogle Scholar
Torrisi, L. & Gammino, S. (2006). Method for the calculation of electrical field in laser-generated plasma for ion stream production. Rev. Sci. Instr. 77, 03B707.Google Scholar