Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-11T07:55:49.621Z Has data issue: false hasContentIssue false

Production of sub-gigabar pressures by a hyper-velocity impact in the collider using laser-induced cavity pressure acceleration

Published online by Cambridge University Press:  21 September 2017

J. Badziak*
Affiliation:
Institute of Plasma Physics and Laser Microfusion, 01-497 Warsaw, Poland
M. Kucharik
Affiliation:
Czech Technical University, FNSPE, 115 49 Praha 1, Czech Republic
R. Liska
Affiliation:
Czech Technical University, FNSPE, 115 49 Praha 1, Czech Republic
*
Address correspondence and reprint requests to: J. Badziak, Institute of Plasma Physics and Laser Microfusion, 01-497 Warsaw, Poland. E-mail: jan.badziak@ifpilm.pl

Abstract

Production of high dynamic pressure using a strong shock wave is a topic of high relevance for high-energy-density physics, inertial confinement fusion, and materials science. Although the pressures in the multi-Mbar range can be produced by the shocks generated with a large variety of methods, the higher pressures, in the sub-Gbar or Gbar range, are achievable only with nuclear explosions or laser-driven shocks. However, the laser-to-shock energy conversion efficiency in the laser-based methods currently applied is low and, as a result, multi-kJ multi-beam lasers have to be used to produce such extremely high pressures. In this paper, the generation of high-pressure shocks in the newly proposed collider in which the projectile impacting a solid target is driven by the laser-induced cavity pressure acceleration (LICPA) mechanism is investigated using two-dimensional hydrodynamic simulations. A special attention is paid to the dependence of shock parameters and the laser-to-shock energy conversion efficiency on the impacted target material and the laser driver energy. It has been found that both in case of low-density and high-density solid targets, the shock pressures in the sub-Gbar range can be produced in the LICPA-based collider with the laser energy of only a few hundreds of joules, and the laser-to-shock energy conversion efficiency can reach values of 10–20%, by an order of magnitude higher than the conversion efficiencies achieved with other laser-based methods used so far.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ahlborn, B. & Liese, W. (1981). Heat flux induced wave fronts. Phys. Fluids 24, 19551966.Google Scholar
Atzeni, S. & Meyer-ter-Vehn, J. (2004). The Physics of Inertial Fusion. Oxford: Clarendon.Google Scholar
Azechi, H., Miyanaga, N., Sakabe, S., Yamanaka, T. & Yamanaka, C. (1981). Model for cannonball-like acceleration of laser-irradiated targets. Jpn. J. Appl. Phys. 20, L477L480.Google Scholar
Badziak, J., Antonelli, L., Batani, D., Chodukowski, T., Dudzak, R., Folpini, G., Hall, F., Kalinowska, Z., Koester, P., Krousky, E., Kucharik, M., Labate, L., Liska, R., Malka, GT., Maheut, Y., Parys, P. Pfeifer, M. Pisarczyk, T., Renner, O., Rosiński, M., Ryć, L., Skala, J., Smid, M., Spindloe, C., Ullschmied, J. & Zaraś-Szydłowska, A. (2015 a). Studies of ablated plasma and shocks produced in a planar target by a sub-nanosecond laser pulse of intensity relevant to shock ignition. Laser Part. Beams 33, 561575.Google Scholar
Badziak, J., Borodziuk, S., Pisarczyk, T., Chodukowski, T., Krousky, E., Masek, J., Skala, J., Ullschmied, J. & Rhee, Y.-J. (2010). Highly efficient acceleration and collimation of high-density plasma using laser-induced cavity pressure. Appl. Phys. Lett. 96, 251502.Google Scholar
Badziak, J., Jabłoński, S., Pisarczyk, T., Rączka, P., Krousky, E., Liska, R., Kucharik, M., Chodukowski, T., Kalinowska, Z., Parys, P., Rosiński, M., Borodziuk, S. & Ullschmied, J. (2012). Highly efficient accelerator of dense matter using laser-induced cavity pressure acceleration. Phys. Plasmas 19, 053105.Google Scholar
Badziak, J., Rosiński, M., Jabłoński, S., Pisarczyk, T., Chodukowski, T., Parys, P., Rączka, P., Krousky, E., Ullschmied, J., Liska, R. & Kucharik, M. (2015 b). Enhanced efficiency of plasma acceleration in the laser-induced cavity pressure acceleration scheme. Plasma Phys. Control. Fusion 57, 014007.Google Scholar
Badziak, J., Rosiński, M., Krousky, E., Kucharik, M., Liska, R. & Ullschmied, J. (2015 c). Generation of ultra-high-pressure shocks by collision of fast plasma projectile driven in the laser-induced cavity pressure acceleration scheme with a solid target. Phys. Plasmas 22, 032709.Google Scholar
Batani, D., Antonelli, L., Atzeni, S., Badziak, J., Baffigi, F., Chodukowski, T., Consoli, F., Cristoforetti, G., De. Angelis, R., Dudzak, R., Folpini, G., Giuffrida, L., Gizzi, L. A., Kalinowska, Z., Koester, P., Krousky, E., Krus, M., Labate, L., Levato, T., Maheut, Y., Malka, G., Margarone, D., Marocchino, A., Nejdl, J., Nicolai, Ph., O'Dell, T., Pisarczyk, T., Renner, O., Rhee, Y. J., Ribeyre, X., Richetta, M., Rosinski, M., Sawicka, M., Schiavi, A., Skala, J., Smid, M., Spindloe, Ch., Ullschmied, J., Velyhan, A. & Vinci, T. (2014). Generation of high pressure shocks relevant to the shock-ignition intensity regime. Phys. Plasmas 21, 032710.Google Scholar
Batani, D., Morelli, A., Tomasini, M., Benuzzi-Mounaix, A., Philippe, F., Koenig, M., Marchet, B., Masclet, I., Rabec, M., Reverdin, Ch., Cauble, R., Celliers, P., Collins, G., Da Silva, L., Hall, T., Moret, M., Sacchi, B., Baclet, P. & Cathala, B. (2002). Equation of state data for iron at pressures beyond 10 Mbar. Phys. Rev. Lett. 88, 235502.CrossRefGoogle ScholarPubMed
Benuzzi, A., Lower, Th., Koenig, M., Faral, B., Batani, D., Beretta, D., Danson, C. & Pepler, D. (1996). Indirect and direct laser driven shock waves and applications to copper equation of state measurements in the 10-40 Mbar pressure range. Phys. Rev. E 54, 21622165.Google Scholar
Cauble, R., Phillion, D.W., Hoover, T.J., Holmes, N.C., Kilkenny, J.D. & Lee, R.W. (1993). Demonstration of 0.75 Gbar planar shocks in X-ray driven colliding foils. Phys. Rev. Lett. 70, 21022105.Google Scholar
Drake, R.P. (2006). High-Energy-Density Physics. Berlin: Springer.Google Scholar
Fortov, V.E. (1982). Dynamic methods in plasma physics. Sov. Phys. Usp. 25, 781809.Google Scholar
Frantaduono, D.E., Smith, R.F., Boehly, T.R., Eggert, J.H., Braun, D.G. & Collins, G.W. (2012). Plasma-accelerated flyer-plates for equation of state studies. Rev. Sci. Instrum. 83, 073504.Google Scholar
Fujita, M., Daido, H., Nishimura, H., Tateyama, R., Ogura, K., Miki, F., Terai, K., Nakai, S. & Yamanaka, C. (1985). Fundamental studies on one-dimensional cannonball targets at 10.6 µm laser wavelength. Jpn. J. Appl. Phys. 24, 737743.Google Scholar
Gehring, J. W. Jr. (1970). Theory of impact on thin targets and shields and correlation with experiment. In High Velocity Impact Phenomena, (Kinslow, R., ed.), pp. 105156. NY: Academic, Chap. IV.Google Scholar
Guskov, S. Yu. (2015). Ultra-power shock wave driven by a laser-generated electron beam. Phys. Scr. 90, 074002.Google Scholar
Guskov, S. Yu., Azechi, H., Demchenko, N.N., Doskoch, I. Ya., Murakami, M., Rozanov, V. B., Sakaiya, T. & Zmitrenko, N.V. (2009). Impact-driven shock waves and thermonuclear neutron generation. Plasma Phys. Control Fusion 51, 095001.Google Scholar
Guskov, S. Yu., Kasperczuk, A., Pisarczyk, T., Borodziuk, S., Ullschmied, J., Krousky, E., Masek, K., Pfeifer, M., Skala, J. & Pisarczyk, P. (2007). Energy of a shock wave generated in different metals under irradiation by a high-power laser pulse. J. Exp. Theor. Phys. 105, 793802.Google Scholar
Hurricane, O.A., Callahan, D.A., Casey, D.T., Celliers, P.M., Cerjan, C., Dewald, E.L., Dittrich, T.R., Döppner, T., Hinkel, D.E., Berzak, L.F., Hopkins, J.L., Kline, S., Le Pape, T. Ma, MacPhee, A.G., Milovich, J.L., Pak, A., Park, H.-S., Patel, P.K., Remington, B.A., Salmonson, J.D., Springer, P.T. & Tommasini, R. (2014). Fuel gain exceeding unity in an inertially confined fusion implosion. Nature 506, 343348.Google Scholar
Kapin, T., Kucharik, M., Limpouch, J., Liska, R. & Vachal, P. (2008). Arbitrary Lagrangian Eulerian method for laser plasma simulations. Int. J. Numer. Methods Fluids, 56, 13371342.Google Scholar
Karasik, M., Weaver, J. L., Aglitskiy, Y., Watari, T., Arikawa, Y., Sakaiya, T., Oh, J., Velikovich, A. L., Zalesak, S. T., Bates, J. W., Obenschain, S. P., Schmitt, A. J., Murakami, M. & Azechi, H. (2010). Acceleration to high velocities and heating by impact using Nike KrF laser. Phys. Plasmas 17, 056317.Google Scholar
Koester, P., Antonelli, L., Atzeni, S., Badziak, J., Baffigi, F., Batani, D., Cecchetti, C. A., Chodukowski, T., Consoli, F., Cristoforetti, G. De., Angelis, R., Folpini, G., Gizzi, L. A., Kalinowska, Z., Krousky, E., Kucharik, M., Labate, L., Levato, T., Liska, R., Malka, G., Maheut, Y., Marocchino, A., Nicolai, P., O'Dell, T., Parys, P., Pisarczyk, T., Raczka, P., Renner, O., Rhee, Y. J., Ribeyre, X., Richetta, M., Rosinski, M., Ryc, L., Skala, J., Schiavi, A., Schurtz, G., Smid, M., Spindloe, C., Ullschmied, J., Wolowski, J. & Zaras, A. (2013). Recent results from experimental studies on laser–plasma coupling in a shock ignition relevant regime. Plasma Phys. Control Fusion 55, 124045.Google Scholar
Kraus, D., Ravasio, A., Gauthier, M., Gericke, D.O., Vorberger, J., Frydrych, S., Helfrich, J., Fletcher, L.B., Schaumann, G., Nagler, B., Barbrel, B., Bachmann, B., Gamboa, E.J., Göde, S., Granados, E., Gregori, G., Lee, H.J., Neumayer, P., Schumaker, W., Döppner, T., Falcone, R.W., Glenzer, S.H. & Roth, M. (2016). Nanosecond formation of diamond and lonsdaleite by shock compression of graphite. Nat. Commun. 7, 10970.Google Scholar
Lemke, R.W., Knudson, M.D., Bliss, D.E., Cochrane, K., Davis, J.-P., Giunta, A.A., Harjes, H.C. & Slutz, S.A. (2005). Magnetically accelerated, ultrahigh velocity flyer plates for shock wave experiments. J. Appl. Phys. 98, 073530.Google Scholar
Liska, R., Kucharik, M., Limpouch, J., Renner, O., Vachal, P., Bednarik, L., Velechovsky, , (2011). ALE Method for Simulations of Laser-Produced Plasmas. In Finite Volumes for Complex Applications VI, Problems & Perspectives, (Fort, J., Furst, J., Halama, J., Herbin, R. & Hubert, F., Eds.), Vol. 2, pp. 857873, Berlin Heidelberg: Springer-Verlag.Google Scholar
Löwer, Th., Sigel, R., Eidmann, K., Foldes, I.B., Huller, S., Massen, J., Tsakiris, G.D., Witkowski, S., Preuss, W., Nishimura, H., Shiraga, H., Kato, Y., Nakai, S. & Endo, T. (1994). Uniform multimegabar shock waves in solids driven by laser-generated thermal radiation. Phys. Rev. Lett. 72, 31863189.Google Scholar
Min, S., Genbai, C., Bin, Z., Weihua, H., Tao, X., Wei, F., Jianting, X. & Yuqiu, G. (2016). Hypervelocity launching of flyers at the SG-III prototype laser facility. J. Appl. Phys. 119, 035903.Google Scholar
Mitchell, A.C., Nellis, W.J., Mariorty, J.A., Heinle, R.A., Holmes, N.C., Tipton, R.E. & Repp, G.W. (1991). Equation of state of Al, Cu, Mo, and Pb at shock pressures up to 2.4 TPa (24 Mbar). J. Appl. Phys. 69, 29812988.Google Scholar
More, R.M., Warren, K.H., Young, D.A. & Zimmerman, G.B. (1988). A new quotidian equation of state (QEOS) for hot dense matter. Phys. Fluids 31, 30593078.Google Scholar
Nellis, W.J. (2016). Dynamic compression of materials: metallization of fluid hydrogen at high pressures. Rep. Prog. Phys. 69, 14791580.Google Scholar
Obenschain, S.P., Whitlock, R.R., McLean, E.A., Ripin, B.H., Price, R.H., Phillion, D.W., Campbell, E.M., Rosen, M.D. & Aurbach, J.M. (1983). Uniform ablative acceleration of targets by laser irradiation at 1014 W/cm2 . Phys. Rev. Lett. 50, 4447.CrossRefGoogle Scholar
Ozaki, N., Sasatani, Y., Kishida, K., Nakano, M., Miyanaga, M., Nagai, K., Nishihara, K., Norimatsu, T., Tanaka, K. A., Fujimoto, Y., Wakabayashi, K., Hattori, S., Tange, T., Kondo, K., Yoshida, M., Kozu, N., Ishiguchi, M. & Takenaka, H. (2001). Planar shock wave generated by uniform irradiation from two overlapped partially coherent laser beams. J. Appl. Phys. 89, 25712576.Google Scholar
Ozaki, N., Tanaka, K.A., Ono, T., Shigemori, K., Nakai, M. , Azechi, H., Yamanaka, T., Wakabayashi, K., Yoshida, M., Nagao, H. & Kondo, K. (2004). GEKKO/HIPER-driven shock waves and equation-of-state measurements at ultrahigh pressures. Phys. Plasmas 11, 16001608.Google Scholar
Piriz, A.P. & Tomasel, F.G. (1992). Heat wave driven by thermal radiation in tamped flows. Phys. Rev. A 45, 87878794.Google Scholar
Shui, M., Chu, G.-B., Xin, J.-T., Wu, Y.-C., Zhu, B., He, W.-H., Xi, T. & Gu, Y.-Q. (2015). Laser-driven flier impact experiments at the SG-III prototype laser facility. Chin. Phys. B24, 094701.Google Scholar
Tahir, N.A., Stöhlker, Th., Shutov, A., Lomonosov, I.V., Fortov, V.E., French, M., Nettelmann, N., Redmer, R., Piriz, A.R., Deutsch, C., Zhao, Y., Zhang, P., Xu, H., Xiao, G. & Zhan, W. (2010). Application of intense heavy ion beams to study high energy density matter. New J. Phys. 12, 073022.Google Scholar
Trunin, R. F. (1994). Shock compressibility of condensed materials in strong shocks generated by underground nuclear explosions. Phys. – Usp. 37, 11231145.Google Scholar
Veeser, L. R. & Solem, S.C. (1978). Studies of laser-driven shock waves in aluminium. Phys. Rev. Lett. 40, 13911394.Google Scholar
Yamada, K., Yagi, M., Nishimura, H., Matsuoka, F., Azechi, H., Yamanaka, T. & Yamanaka, C. (1982). Improvement of absorption and hydrodynamic efficiency by using a double-foil target with a pinhole. J. Phys. Soc. Jpn. 51, 280285.Google Scholar