Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-11T11:49:22.194Z Has data issue: false hasContentIssue false

Particle simulation of acceleration of quasineutral plasma blocks by short laser pulses

Published online by Cambridge University Press:  06 March 2006

O. KLIMO
Affiliation:
Czech Technical University in Prague, Faculty of Nuclear Sciences and Physical Engineering, Praha, Czech Republic
J. LIMPOUCH
Affiliation:
Czech Technical University in Prague, Faculty of Nuclear Sciences and Physical Engineering, Praha, Czech Republic

Abstract

Acceleration of quasineutral plasma blocks by ponderomotive force induced by normally incident short laser pulse is studied here via 1D3V Particle-In-Cell (PIC) simulations. Very high current densities 109–1011 Acm−2 of accelerated ions are observed for maximum laser intensities in the range 1016–1018 Wcm−2 on solid hydrogen target. Ion acceleration process is traced here via evolution of ion density and of ion velocity distribution. Basic parameters of the accelerated plasma blocks are determined from temporally integrated ion distributions. Our results provide more detailed information than the previous analytical estimates (Hora, 2003) and the two-fluid 1D hydrodynamic simulations (Glowacz et al., 2004).

Type
Research Article
Copyright
© 2006 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Badziak, J., Glowacz, S., Jablonski, S., Parys, P., Wolowski, J. & Hora, H. (2004). Production of ultrahigh-current-density ion beams by short-pulse skin-layer laser-plasma interaction. Appl. Phys. Lett. 85, 30413043.Google Scholar
Hora, H. (2003). Skin-depth theory explaining anomalous picosecond-terawatt laser plasma interaction II. Cz. J. Phys. 53, 199217.Google Scholar
Hora, H. (1981). Physics of Laser Driven Plasmas. Chapter 10.5. New York: John Wiley & Sons.
Glowacz, S., Badziak, J. & Jablonski, S. (2004). Numerical modelling of production of ultrahigh-current-density ion beams by short-pulse laser-plasma interaction. Cz. J. Phys. 54, C460C467.Google Scholar
Lichters, R., Pfund, R.E.W. & Meyer-ter-Vehn, J. (1997). LPIC++ A parallel One-dimensional Relativistic Electromagnetic Particle-In-Cell-Code for Simulating Laser-Plasma-Interactions. Report MPQ 225, Max-Planck Institut für Quantenoptik, Garching, Germany.
Miley, G.H., Osman, F., Hora, H., Badziak, J., Rohlena, K., Jungwirth, K., Wolowski, J., Cang, Y., He, X., Zhang, J. & Hammerling, P.X. (2004). Plasma block acceleration by ps-TW laser irradiation. Proc. SPIE 5448, 973986.Google Scholar
Roth, M., Blazevic, A., Geissel, M., Schlegel, T., Cowan, T.E., Allen, M., Gauthier, J.C., Audebert, P., Fuchs, J., Meyer-ter-Vehn, J., Hegelich, M., Karsch, S. & Pukhov, A. (2002). Energetic ions generated by laser pulses: A detailed study on target properties. Phys. Rev. ST—Accel. Beams 5, 061301.Google Scholar
Snavely, R.A., Key, M.H., Hatchett, S.P., Cowan, T.E., Roth, M., Phillips, T.W., Stoyer, M.A., Henry, E.A., Sangster, T.C., Singh, M.S., Wilks, S.C., MacKinnon, A., Offenberger, A., Pennington, D.M., Yasuike, K., Langdon, A.B., Lasinski, B.F., Johnson, J., Perry, M.D. & Campbell, E.M. (2000). Intense high-energy proton beams from petawatt-laser irradiation of solids. Phys. Rev. Lett. 85, 29452948.Google Scholar
Wilks, S.C., Langdon, A.B., Cowan, T.E., Roth, M., Singh, M., Hatchett, S., Key, M.H., Pennington, D., MacKinnon, A. & Snavely, R.A. (2001). Energetic proton generation in ultra-intense laser-solid interactions. Phys. Plasmas 8, 542549.Google Scholar
Zhidkov, A. & Sasaki, A. (1999). Subpicosecond pulse laser absorption by an overdense plasma with variable ionization. Phys. Rev. E 59, 70857095.Google Scholar